Prolonging Functional Speech in Persons with Amyotrophic Lateral Sclerosis: A Real-Time Virtual Vocal Tract
延长肌萎缩侧索硬化症患者的功能性言语:实时虚拟声带
基本信息
- 批准号:9370414
- 负责人:
- 金额:$ 18.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-10 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmyotrophic Lateral SclerosisArticulationArticulatorsBypassCellular PhoneCerebral PalsyCharacteristicsCommunicationComplexCuesDataDeteriorationDevelopmentDevicesDiseaseDysarthriaEffectivenessElectromagneticsEnsureFutureGenerationsGoalsImpairmentIndividualJawLaboratoriesLearningLip structureMachine LearningMalignant neoplasm of larynxMapsMeasuresModelingModificationMotionMotorMovementMultiple SclerosisOralOutputParkinson DiseaseParticipantPatientsPerformancePersonsPlayQuality of lifeQuestionnairesRecordsResearchResearch PersonnelRunningSeveritiesSpeechSpeech IntelligibilitySpeech SoundSpeedStrokeStructureSurveysSystemTablet ComputerTabletsTechniquesTechnologyTest ResultTestingTimeTongueTraumatic Brain InjuryVoiceWorkbasebrain cellclear speechcostefficacy testingexperienceexperimental studyimprovedinnovationjaw movementlaptopmotor impairmentnoveloral communicationorofacialphrasesportabilityspatiotemporaltime useusabilityvirtual
项目摘要
People with ALS eventually and inevitably experience serious speech impairment due to progressive
deterioration of brain cells that control movements of the tongue, lips and jaw. Despite the
devastating consequences of this speech impairment on quality of life and survival, few options are
available to assist impaired oral communication, and many existing speech-generating technologies
are slow to operate and cost prohibitive. This project seeks to improve quality of life for persons with
impaired speech due to ALS by testing the effectiveness of a low-cost, speech-generating device (a
virtual vocal tract) that could significantly prolong the ability of these patients to communicate orally. If
successful, these techniques could be extended for use by patients' with a broad range of speech
motor impairments.
The virtual vocal track uses machine learning algorithms to predict what a person is attempting to
say, in real-time, based solely on lip movements. Users of the device are able to trigger the playback
of a number of predetermined phrases by simply attempting to articulate what they want to say. Our
previous work has shown the feasibility of this approach using cost-prohibitive laboratory systems
such as electromagnetic articulography. Recent advances in 3D depth mapping camera technology
allow these techniques to be tested for the first time using technologies, which are low-cost, portable
and already being integrated into consumer devices such as laptops and cellphones.
To this end, the system under development will be tested in 60 patients with ALS, representing a
range of speech impairment from normal to severe speech intelligibility (15 normal, 15 mild, 15
moderate, 15 severe). During testing, participants will be cued to articulate the phrases in a random
order as fast as is comfortable for them. The entire session will be recorded and the following
variables will be measured offline: recognition accuracy, recognition latency, task time, % completion,
and communication rate (words per minute). Users will rate the usability and acceptability of the
virtual vocal tract immediately following device testing, using the System Usability Scale. Results of
this testing will be used to address the following specific aims: (1) Determine the accuracy and
latency of real-time phrase synthesis based on dysarthric speech using the virtual vocal tract, (2)
Determine the usability and acceptability of real-time phrases produced using the virtual vocal tract,
and (3) Identify the articulatory and speech factors that degrade recognition accuracy.
ALS患者最终会不可避免地经历严重的语言障碍,
控制舌头、嘴唇和下巴运动的脑细胞退化。尽管
这种语言障碍对生活质量和生存的破坏性后果,很少有选择,
可用于帮助受损的口头交流,以及许多现有的语音生成技术
操作缓慢且成本过高。该项目旨在提高残疾人的生活质量,
通过测试一种低成本的语音发生装置(a)的有效性,
虚拟声道),可以显著延长这些患者的口头交流能力。如果
如果成功的话,这些技术可以推广到具有广泛语言能力的病人身上
运动障碍
虚拟声道使用机器学习算法来预测一个人试图
比如说,实时的,仅仅基于嘴唇的运动。该设备的用户能够触发回放
通过简单地尝试清楚地表达他们想说的话来表达一些预定的短语。我们
以前的工作已经表明,使用成本高昂的实验室系统,这种方法是可行的
例如电磁关节造影术。3D深度映射相机技术的最新进展
允许这些技术首次使用低成本、便携式技术进行测试,
并且已经被集成到诸如笔记本电脑和手机之类的消费设备中。
为此,正在开发的系统将在60名ALS患者中进行测试,
语言障碍的范围从正常到严重的语言清晰度(15正常,15轻度,15
中度,15例重度)。在测试过程中,参与者将被提示以随机的方式说出这些短语。
以最快的速度为他们服务。整个会议将被记录下来,
将离线测量变量:识别准确性、识别延迟、任务时间、完成百分比,
和通信速率(每分钟的字)。用户将对
器械测试后立即使用系统可用性量表进行虚拟声道测试。结果
该测试将用于解决以下具体目标:(1)确定准确性,
使用虚拟声道的基于构音障碍语音的实时短语合成的延迟,(2)
确定使用虚拟声道产生的实时短语的可用性和可接受性,
(3)识别降低识别准确率的发音和语音因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JORDAN R GREEN其他文献
JORDAN R GREEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JORDAN R GREEN', 18)}}的其他基金
A digital tool for monitoring speech decline in ALS
用于监测 ALS 言语衰退的数字工具
- 批准号:
10482581 - 财政年份:2022
- 资助金额:
$ 18.98万 - 项目类别:
A digital tool for monitoring speech decline in ALS
用于监测 ALS 言语衰退的数字工具
- 批准号:
10838866 - 财政年份:2022
- 资助金额:
$ 18.98万 - 项目类别:
Oromotor Deficits in Minimally Verbal Children with ASD
自闭症谱系障碍儿童的口部运动缺陷
- 批准号:
10470954 - 财政年份:2019
- 资助金额:
$ 18.98万 - 项目类别:
Oromotor Deficits in Minimally Verbal Children with ASD
自闭症谱系障碍儿童的口部运动缺陷
- 批准号:
10689718 - 财政年份:2019
- 资助金额:
$ 18.98万 - 项目类别:
Oromotor Deficits in Minimally Verbal Children with ASD
自闭症谱系障碍儿童的口部运动缺陷
- 批准号:
10001017 - 财政年份:2019
- 资助金额:
$ 18.98万 - 项目类别:
The development and validation of a novel tool for the assessment of bulbar dysfunction in ALS
评估 ALS 延髓功能障碍的新工具的开发和验证
- 批准号:
10440426 - 财政年份:2018
- 资助金额:
$ 18.98万 - 项目类别:
The development and validation of a novel tool for the assessment of bulbar dysfunction in ALS
评估 ALS 延髓功能障碍的新工具的开发和验证
- 批准号:
10205019 - 财政年份:2018
- 资助金额:
$ 18.98万 - 项目类别:
The development and validation of a novel tool for the assessment of bulbar dysfunction in ALS
评估 ALS 延髓功能障碍的新工具的开发和验证
- 批准号:
10405152 - 财政年份:2018
- 资助金额:
$ 18.98万 - 项目类别:
Prolonging Functional Speech in Persons with Amyotrophic Lateral Sclerosis: A Real-Time Virtual Vocal Tract
延长肌萎缩侧索硬化症患者的功能性言语:实时虚拟声带
- 批准号:
10201558 - 财政年份:2017
- 资助金额:
$ 18.98万 - 项目类别:
SPEECH MOVEMENT CLASSIFICATION FOR ASSESSING AND TREATING ALS
用于评估和治疗 ALS 的言语运动分类
- 批准号:
8613983 - 财政年份:2013
- 资助金额:
$ 18.98万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Continuing Grant