Brain Injury Treatment by Modulation of Hemodynamics With Blood Soluble Drag Reducing Molecules

用血溶性减阻分子调节血流动力学治疗脑损伤

基本信息

项目摘要

Abstract Traumatic brain injury (TBI) is a major health problem, representing a third of all injury-related deaths in the United States and 70% of long-term disabilities in survivors. Decades of TBI research focused almost exclusively on neuroprotective strategies, has failed to develop any therapeutics for clinical treatment. One less explored potential target is the cerebral circulation. In TBI, there is increasing recognition that the peri-contusional areas of TBI suffer microvascular failure and diffusional hypoxia and edema. Our studies on microvascular shunts (MVS) with high intracranial pressure (ICP) corroborate microcirculatory failure. We propose here modulation of hemodynamics with blood soluble drag reducing polymers (DRP) as a novel treatment modality for TBI that specifically targets cerebral microcirculation and that based on physical but not pharmacological principles. Nanomolar amounts of intravenous DRP reduce blood pressure loss in arterioles by diminishing flow separations and microvortices at vessel bifurcations, increase precapillary pressure and the density of functioning capillaries. Increased vascular wall shear rate may reduce transcapillary macrophage migration and inflammation. We showed that 140 µg/kg of intravenous DRP (ED70) increased blood flow velocity in cerebral arterioles, reduced MVS, restored perfusion in capillaries and reduced tissue hypoxia in a rat model of TBI when i.v. injected 30 minutes after the insult. The next logical step, our objective, is to perform a comprehensive study of the dose and time-related efficacy of DRP and to examine the therapeutic mechanisms involved. Central hypothesis: DRP, through their general dose-dependent action on cerebrovascular microcirculation, can present a unique and effective therapy for TBI, applicable at both, early and later time. The rationale is that unlike other TBI therapies tested thus far, the hemorheological effects of DRP are independent of tissue status in terms of tissue or vascular receptor reactivity or sensitivity for its mechanism of action. Our long-term goal is to optimize the application of DRP after TBI for maximal efficacy on long-term recovery and provide for the first time, a therapeutic intervention that may be effective even if delayed hours after injury. Using the lateral fluid percussion injury TBI model in rats, we will address two aims: 1) to study the acute dose-dependent effects of DRP on the time course and relative changes in cerebral microvascular flow, i.e. MVS, tissue oxygenation and metabolism using in-vivo 2-photon laser microscopy and laser speckle imaging after moderate and severe TBI; and 2) to define the optimal dose and therapeutic time window of DRP for clinically relevant long-term outcomes and mechanisms involved using magnetic resonance imaging, behavioral testing and histology, possible anti-inflammatory effects of rheological modulation will be evaluated by ELISA and immunohistochemistry. To comply with NIH requirement, studies will be done on both sexes to evaluate possible female/male differences. The proposed research is significant since it will provide the first non-pharmacologic rheological treatment for TBI targeting impaired cerebral microcirculation and will reveal the blood flow-related pathogenesis and recovery mechanisms in TBI.
抽象的 创伤性脑损伤 (TBI) 是一个主要的健康问题,占美国所有伤害相关死亡的三分之一 美国70%的幸存者长期残疾。数十年的 TBI 研究几乎完全集中于 在神经保护策略方面,未能开发出任何用于临床治疗的疗法。少探索一处 潜在目标是脑循环。在 TBI 中,人们越来越认识到挫伤周围区域 TBI 患者遭受微血管衰竭和弥散性缺氧和水肿。我们对微血管分流的研究 (MVS) 与高颅内压 (ICP) 证实微循环衰竭。我们在这里建议调制 血流动力学减阻聚合物(DRP)作为 TBI 的新型治疗方式 专门针对大脑微循环,并且基于物理原理而不是药理学原理。 纳摩尔量的静脉注射 DRP 通过减少血流分离来减少小动脉血压损失 和血管分叉处的微涡流,增加毛细血管前压力和功能毛细血管的密度。 血管壁剪切率增加可能会减少跨毛细血管巨噬细胞迁移和炎症。我们 结果表明,140 µg/kg 静脉注射 DRP (ED70) 可增加脑小动脉的血流速度,降低 MVS,在 TBI 大鼠模型中,静脉注射时可恢复毛细血管灌注并减少组织缺氧。注射30 侮辱后几分钟。下一个合乎逻辑的步骤,即我们的目标,是对剂量进行全面研究 以及 DRP 与时间相关的疗效,并检查所涉及的治疗机制。中心假设:DRP, 通过其对脑血管微循环的一般剂量依赖性作用,可以呈现出独特且 TBI 的有效疗法,早期和晚期均适用。其基本原理是,与其他 TBI 疗法不同 迄今为止的测试表明,DRP 的血液流变学效应与组织或血管方面的组织状态无关。 受体对其作用机制的反应性或敏感性。我们的长期目标是优化应用 TBI 后的 DRP 对长期恢复具有最大功效,并首次提供治疗干预 即使在受伤后延迟数小时,这也可能有效。采用大鼠侧方液体冲击损伤TBI模型, 我们将实现两个目标:1)研究 DRP 对时间进程和相对剂量的急性剂量依赖性影响 使用体内 2 光子改变脑微血管流量,即 MVS、组织氧合和代谢 中度和重度 TBI 后的激光显微镜和激光散斑成像; 2) 确定最佳剂量 DRP 的临床相关长期结果和治疗时间窗以及涉及使用的机制 磁共振成像、行为测试和组织学、流变学可能的抗炎作用 将通过 ELISA 和免疫组织化学评估调节。为了符合 NIH 的要求,研究将 对两性进行评估,以评估可能的女性/男性差异。拟议的研究意义重大,因为 它将为针对受损大脑的 TBI 提供第一种非药物流变治疗 微循环,并将揭示 TBI 中与血流相关的发病机制和恢复机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denis E. Bragin其他文献

Noninvasive Vagus Nerve Stimulation Protects Neurons in the Perihematomal Region and Improves the Outcomes in a Rat Model of Intracerebral Hemorrhage
  • DOI:
    10.1007/s12028-024-02195-9
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Eder Cáceres;Pascal Salazar;Satoka Shidoh;Michael J. Ortiz;Denis E. Bragin;Fazle Kibria;Afshin A. Divani
  • 通讯作者:
    Afshin A. Divani

Denis E. Bragin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denis E. Bragin', 18)}}的其他基金

Brain Injury Treatment by Modulation of Hemodynamics with Blood Soluble Drag Reducing Molecules
用血溶性减阻分子调节血流动力学治疗脑损伤
  • 批准号:
    10470005
  • 财政年份:
    2019
  • 资助金额:
    $ 4.38万
  • 项目类别:
Brain Injury Treatment by Modulation of Hemodynamics with Blood Soluble Drag Reducing Molecules
用血溶性减阻分子调节血流动力学治疗脑损伤
  • 批准号:
    9979985
  • 财政年份:
    2019
  • 资助金额:
    $ 4.38万
  • 项目类别:
Brain Injury Treatment by Modulation of Hemodynamics with Blood Soluble Drag Reducing Molecules
用血溶性减阻分子调节血流动力学治疗脑损伤
  • 批准号:
    10703254
  • 财政年份:
    2019
  • 资助金额:
    $ 4.38万
  • 项目类别:
Brain Injury Treatment by Modulation of Hemodynamics with Blood Soluble Drag Reducing Molecules
用血溶性减阻分子调节血流动力学治疗脑损伤
  • 批准号:
    10685281
  • 财政年份:
    2019
  • 资助金额:
    $ 4.38万
  • 项目类别:
Brain Injury Treatment by Modulation of Hemodynamics with Blood Soluble Drag Reducing Molecules
用血溶性减阻分子调节血流动力学治疗脑损伤
  • 批准号:
    10187671
  • 财政年份:
    2019
  • 资助金额:
    $ 4.38万
  • 项目类别:
Brain Injury Treatment by Modulation of Hemodynamics with Blood Soluble Drag Reducing Molecules
用血溶性减阻分子调节血流动力学治疗脑损伤
  • 批准号:
    10067074
  • 财政年份:
    2019
  • 资助金额:
    $ 4.38万
  • 项目类别:
Brain Stimulation in Animal Models of Recovery from Acute Brain Injury
急性脑损伤动物模型中的脑刺激恢复
  • 批准号:
    9144415
  • 财政年份:
  • 资助金额:
    $ 4.38万
  • 项目类别:
Brain Stimulation in Animal Models of Recovery from Acute Brain Injury
急性脑损伤动物模型中的脑刺激恢复
  • 批准号:
    8813365
  • 财政年份:
  • 资助金额:
    $ 4.38万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 4.38万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.38万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 4.38万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.38万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 4.38万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.38万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 4.38万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 4.38万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 4.38万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.38万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了