Improving the Safety of Genome Editing With Human Kidney Organoids
提高人肾类器官基因组编辑的安全性
基本信息
- 批准号:9810503
- 负责人:
- 金额:$ 71.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AIDS-Associated NephropathyAcuteAcute DiseaseAcute Renal Failure with Renal Papillary NecrosisAdverse effectsAdverse eventAntigen PresentationArchitectureAutoimmune DiseasesBiological AssayCRISPR/Cas technologyCell LineCellsChronicChronic DiseaseClinical TrialsComputer SimulationDNA DamageDNA SequenceDistalEarly DiagnosisEndothelial CellsEpithelial CellsEventExperimental ModelsFDA approvedFibrosisFrequenciesGenesGenetic DiseasesGenomeGoalsHumanHuman GenomeImmuneImpairmentIn VitroInflammationInflammatoryInjuryInterventionKidneyKidney DiseasesKnowledgeLeadLifeLupus NephritisMalignant NeoplasmsMediatingMetabolismMethodsModelingModificationMonitorMutationMyocardial InfarctionNephritisNephronsOncogenicOrganOrganoidsOutcomePhenotypePhysiologicalPluripotent Stem CellsPre-Clinical ModelProductionProliferatingRenal carcinomaResearchRiskRodent ModelSafetyStructureSyndromeTherapeuticTimeTissue ModelTissue SampleTubular formationWorkadaptive immune responseadverse outcomebasecarcinogenesiscell typeclinical applicationclinical effectcytokinedeep sequencingdesigngenome editinghigh throughput screeninghuman tissueimmunogenicimprovedin vivoinnovationkidney cellpodocytepreconditioningpredictive modelingreplication stressresponseside effectspecific biomarkerstherapeutic genome editingtherapy developmenttumorigenesis
项目摘要
IMPROVING THE SAFETY OF GENOME EDITING WITH HUMAN KIDNEY ORGANOIDS
PROJECT SUMMARY
The goal of this project is to apply genome editors in organoid cultures to establish a predictive model for
adverse events in human kidney cell types, including both acute and chronic disorders with life-threatening
consequences. Genome editing platforms enable the efficient manipulation of specific DNA sequences in the
human genome, and therefore have enormous potential as therapeutics. The kidneys are important target
organs, with opportunities for interventions in vivo as well as ex vivo. However, there is a dearth of knowledge
about how kidney cells respond to genome editing.
Kidneys are known to be susceptible to acute toxic injury, long-term tumorigenesis, as well as chronic
immune-mediated responses. A major barrier to predicting these effects is the lack of human experimental
models that recapitulate in vivo responses. Rodent models are inherently low-throughput, and have limited
ability to predict human safety, while kidney cell lines are too dedifferentiated to accurately model nephrons.
To overcome this barrier, we have derived human kidney organoids from pluripotent stem cells as a
surrogate for organ structure and function in vitro. Organoids possess many of the key features of kidney
nephrons, including diverse cell types in distal-to-proximal arrangements, can express specific phenotypes
associated with kidney injury and genetic disease, and are amenable to high throughput screening (HTS).
Based on our preliminary work, we hypothesize that gene editing will have deleterious effects on the kidney
that are specific, predictable, and can be recapitulated in an organoid model to optimize their design for safe
application. This work is of great significance because it will establish a new paradigm for therapy development
in human cells, in which multi-dimensional HTS in organoids followed by deep sequencing and detailed
analysis identifies the safest and most promising candidates. It is highly innovative because it will bring to light
adverse consequences of genome editing of which we are currently unaware, via cutting-edge assays that
have never before been applied to organoids. Key findings in organoids will be validated in human kidney
tissue samples and human kidneys-on-chips.
The proposed research will be pursued as three Aims. The first Aim is to enhance the safety of gene editing
for human nephrons by detecting and ameliorating physiological damage to critical cell types in kidney
organoids. Aim 2 is to reduce the risk of inadvertent carcinogenesis by profiling oncogenic mutations and
transformation events in human kidney organoids subjected to genome editing. Finally, in Aim 3 we propose to
identify potential syndromes of editing-associated nephritis by elucidating the immunogenic consequences of
CRISPR-Cas9 activity in nephron compartments. Collectively, these three Aims will establish a robust and
potentially high throughput framework in which to improve the safety of candidate compounds and increase the
number of FDA-approved treatments for kidneys and other organs.
提高人肾组织基因组编辑的安全性
项目摘要
该项目的目标是在类器官培养中应用基因组编辑器,以建立一个预测模型,
人肾细胞类型的不良事件,包括危及生命的急性和慢性疾病
后果基因组编辑平台使得能够有效地操纵基因组中的特定DNA序列。
人类基因组,因此具有巨大治疗潜力。肾脏是重要靶点
器官,有机会在体内以及离体干预。然而,人们缺乏知识,
肾细胞对基因组编辑的反应
已知肾脏易受急性毒性损伤、长期肿瘤发生以及慢性毒性损伤的影响。
免疫介导的反应。预测这些影响的一个主要障碍是缺乏人类实验
重现体内反应的模型。啮齿动物模型固有地低通量,并且具有有限的
预测人类安全性的能力,而肾细胞系去分化太严重,无法准确模拟肾单位。
为了克服这一障碍,我们从多能干细胞中衍生出了人类肾脏类器官,
体外器官结构和功能替代物。类器官具有肾脏的许多关键特征
肾单位,包括不同的细胞类型,在远端到近端的安排,可以表达特定的表型
与肾损伤和遗传性疾病相关,并且适合于高通量筛选(HTS)。
基于我们的初步工作,我们假设基因编辑会对肾脏产生有害影响
它们是特异性的、可预测的,并且可以在类器官模型中重现,以优化它们的设计,
应用程序.这项工作具有重要意义,因为它将为治疗发展建立一个新的范式
在人类细胞中,其中在类器官中的多维HTS随后进行深度测序和详细的
分析确定最安全和最有前途的候选人。它具有高度的创新性,因为它将揭示
基因组编辑的不利后果,我们目前还不知道,通过尖端的测定,
从未被应用于类器官。类器官的关键发现将在人类肾脏中得到验证
组织样本和人体肾脏芯片
本研究将围绕三个目标展开。第一个目的是提高基因编辑的安全性
通过检测和改善对肾脏中关键细胞类型的生理损伤,
类器官目的2是通过分析致癌突变来降低意外致癌的风险,
在经历基因组编辑的人肾类器官中的转化事件。最后,在目标3中,我们建议
通过阐明免疫原性后果,确定编辑相关肾炎的潜在综合征,
肾单位区室中的CRISPR-Cas9活性。总的来说,这三个目标将建立一个强大的,
潜在的高通量框架,在其中改善候选化合物的安全性并增加药物的有效性。
FDA批准的肾脏和其他器官治疗方法的数量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Solomon Freedman其他文献
Benjamin Solomon Freedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Solomon Freedman', 18)}}的其他基金
Utility of Human Organoids for Safety and Efficiency Evaluations of Genome Editing Therapeutics
人类类器官在基因组编辑治疗安全性和效率评估中的应用
- 批准号:
10667181 - 财政年份:2023
- 资助金额:
$ 71.33万 - 项目类别:
Improving the Safety of Genome Editing With Human Kidney Organoids
提高人肾类器官基因组编辑的安全性
- 批准号:
10335116 - 财政年份:2019
- 资助金额:
$ 71.33万 - 项目类别:
Improving the Safety of Genome Editing With Human Kidney Organoids
提高人肾类器官基因组编辑的安全性
- 批准号:
10407081 - 财政年份:2019
- 资助金额:
$ 71.33万 - 项目类别:
Improving the Safety of Genome Editing With Human Kidney Organoids
提高人肾类器官基因组编辑的安全性
- 批准号:
10019368 - 财政年份:2019
- 资助金额:
$ 71.33万 - 项目类别:
A Human Organoid Model of Polycystic Kidney Disease
多囊肾病的人体类器官模型
- 批准号:
10447043 - 财政年份:2018
- 资助金额:
$ 71.33万 - 项目类别:
A Human Organoid Model of Polycystic Kidney Disease
多囊肾病的人体类器官模型
- 批准号:
10190922 - 财政年份:2018
- 资助金额:
$ 71.33万 - 项目类别:
Modeling Polycystic Kidney Disease Using Human Induced Pluripotent Stem Cells
使用人类诱导多能干细胞模拟多囊肾病
- 批准号:
8754901 - 财政年份:2014
- 资助金额:
$ 71.33万 - 项目类别:
Modeling Polycystic Kidney Disease Using Human Induced Pluripotent Stem Cells
使用人类诱导多能干细胞模拟多囊肾病
- 批准号:
8440919 - 财政年份:2011
- 资助金额:
$ 71.33万 - 项目类别:
Modeling Polycystic Kidney Disease Using Human Induced Pluripotent Stem Cells
使用人类诱导多能干细胞模拟多囊肾病
- 批准号:
8534862 - 财政年份:2011
- 资助金额:
$ 71.33万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 71.33万 - 项目类别:
Standard Grant














{{item.name}}会员




