A wireless fully-passive miniaturized patient-tailored pacemaker

无线全无源微型患者定制起搏器

基本信息

项目摘要

Summary Despite major advances in pacemaker technologies during the past decade, current pacemaker systems still suffer from several critical limitations. Primarily, the need to implant pacemaker leads within cardiac chambers could lead to a host of complications such as infection, thrombosis, tricuspid valve and ventricular perforation, along with the complications associated with the extraction of the lead when required. Furthermore, with traditional pacemakers, the cardiac regions accessible to pacing are restricted to right ventricle (RV, typically at the apex) and occasionally, coronary sinus distribution in cases of biventricular pacing. RV pacing creates abnormal left ventricular (LV) contraction, reduced pump function, hypertrophy, ultrastructural abnormalities and increases risk of atrial fibrillation, ventricular arrhythmias and ultimately heart failure and death. Leadless pacemakers address the issue associated with intravascular leads, but they remain limited in pacing only the RV and require placement of a new pacemaker after battery depletion. The recently developed remote ultrasound- powered wireless LV pacing electrode in conjunction with traditional pacemaker for biventricular pacing is technically limited by need for an acoustic window free of rib cage and lung on the transmission path to the electrode and the high density ultrasound drains battery quickly. To overcome the limitations of currently available pacemakers, we propose to develop the next generation of pacemaker system composed of wireless, miniaturized, battery-free, radiofrequency (RF) microwave activated sensor/stimulator electrodes that could be implantable and controlled by a remote pulse generator. In Aim 1, we will pursue technical development of miniaturized wireless sensor/stimulator electrodes, operating as a stand-alone platform, and remote pulse generator controller to monitor simulated cardiac signals and provide pacing signals using Micro-Electro-Mechanical-Systems (MEMS) and RF technologies on an organic phantom model while testing safety by measuring heat generation and extraneous RF interference. In Aim 2, we will test the wireless pacemaker system in vitro by measuring signal detection, pacing stimulation and tissue safety on our validated biomimetic cardiac micro-tissue model, using human induced pluripotent stem cell derived CMs (hiPSCs-CMs), as well as in vivo using a rodent thoracotomy model. We envision that the proposed innovative wireless pacemaker system could usher a paradigm shift in pacemaker therapeutics through the ability to pace precise regions of the heart resulting in more physiologic pacing and optimization of cardiac performance. !
摘要 尽管起搏器技术在过去十年中取得了重大进展,但目前的起搏器系统仍然 面临着几个关键的限制。首先,需要在心腔内植入起搏器导线 可能导致一系列并发症,如感染、血栓形成、三尖瓣和脑室穿孔, 以及在需要时与提取铅相关的并发症。此外,有了 传统的起搏器,起搏的心脏区域仅限于右室(RV,通常在 心尖部),偶见双室起搏时的冠状静脉窦分布。房车起搏创造了 左心室收缩异常,泵功能减退,肥厚,超微结构异常和 增加房颤、室性心律失常以及最终心力衰竭和死亡的风险。无铅 起搏器解决了与血管内导联相关的问题,但它们仅限于右室起搏。 并要求在电池耗尽后放置新的起搏器。最近开发的远程超声波- 动力无线LV起搏电极与传统起搏器联合用于双室起搏 技术上受限于在传输路径上需要无肋骨和肺的声学窗 电极和高密度超声波会迅速耗尽电池。克服目前的局限性 现有的起搏器,我们建议开发由以下组成的下一代起搏器系统 无线,小型化,无电池,射频(RF)微波激活传感器/刺激器 可以植入并由远程脉冲发生器控制的电极。在目标1中,我们将追求 微型无线传感器/刺激器电极的技术开发,作为独立操作 平台和远程脉冲发生器控制器,用于监测模拟心脏信号并提供起搏信号 在有机体模模型上使用微电子机械系统(MEMS)和射频技术 通过测量发热量和外部射频干扰来测试安全性。在目标2中,我们将测试无线 起搏器系统在体外通过测量信号检测、起搏刺激和组织安全性对我们的验证 仿生心脏微组织模型,采用人诱导多能干细胞来源的CMS(hiPSCs-CMS), 以及在活体内使用啮齿动物开胸模型。我们设想,提议的创新无线 起搏器系统可以通过精确起搏的能力带来起搏器治疗的范式转变 心脏的不同部位可以产生更多的生理性起搏,从而优化心脏性能。 好了!

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer M Blain Christen其他文献

Jennifer M Blain Christen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer M Blain Christen', 18)}}的其他基金

A wireless fully-passive miniaturized patient-tailored pacemaker
无线全无源微型患者定制起搏器
  • 批准号:
    10002217
  • 财政年份:
    2019
  • 资助金额:
    $ 18.18万
  • 项目类别:
A wireless fully-passive miniaturized patient-tailored pacemaker
无线全无源微型患者定制起搏器
  • 批准号:
    10249134
  • 财政年份:
    2019
  • 资助金额:
    $ 18.18万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 18.18万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 18.18万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了