Gas-Phase Cross-Linking with Ion/Ion Chemistry Coupled to Ion Mobility/Mass Spectrometry
离子/离子化学气相交联与离子淌度/质谱联用
基本信息
- 批准号:9807489
- 负责人:
- 金额:$ 20.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino AcidsAmyloidBinding SitesBiological ProcessBiomedical ResearchCell MobilityCellsChemistryClinical ResearchClinical TreatmentComplex MixturesCoupledCouplingCryoelectron MicroscopyCrystallizationData AnalysesDimensionsDiseaseDissociationDrug DesignElectronsGasesGenerationsGoalsHealthHeterogeneityHumanIonsKnowledgeLabelLeadLocationMalignant NeoplasmsMass Spectrum AnalysisMeasurementMeasuresMethodsMissionModificationMolecular ConformationMolecular WeightNatureNuclear Magnetic ResonanceOrganismOutcomeParkinson DiseasePeptidesPharmaceutical PreparationsPhasePhosphorylationPost-Translational Protein ProcessingProductionProtein AnalysisProtein DynamicsProteinsPublic HealthQuaternary Protein StructureReactionReaction TimeReagentResearchResearch DesignResearch Project GrantsResolutionRoentgen RaysSamplingShapesSignal TransductionSiteSpeedStructural ProteinStructureSystemTechniquesTechnologyUnited States National Institutes of Healthalpha synucleincrosslinkdrug candidatedrug developmentexperimental studyfield studyflexibilityinnovationion mobilitylink proteinmass spectrometermillisecondnew technologynovelpreservationprotein complexprotein foldingprotein protein interactionprotein structureprotein structure functionscreeningsmall moleculestoichiometrytandem mass spectrometrytechnology developmenttherapy designtooltranscription factorvirtual
项目摘要
PROJECT SUMMARY
Although many technologies exist for studying protein structures, none possess a combination of speed,
selectivity, accuracy, resolution, and flexibility. The long-term goal is to use a suite of gas-phase chemistries for
ion/ion reactions coupled to ion mobility (IM) and tandem mass spectrometry (MS) measurements for high-
throughput, virtually sample-prep free, protein structure measurements. The overall objective for this exploratory
project, which is the next step toward attaining our long-term goal, is to implement rapid ion/ion cross-linking
reactions on an IM/MS platform, using tandem mass spectrometry to identify cross-linked sites. The rationale for
the development of this technology is to combine the information from native IM/MS with information obtained
from cross-linking in an experimental method conducted on the sub-second timescale. The increase in
throughput, information, and lack of sample prep (compared to, e.g., X-ray diffractometry, nuclear magnetic
resonance, or cryo-electron microscopy) is expected to advance biomedical research determining protein
structure and function to where protein structural determinations can become rapid and routine. The overall
objective of this application will be reached through the following Specific Aims: 1. Combine gas-phase ion/ion
cross-linking of intact proteins with IM/MS measurements; and 2. Use IM combined with tandem MS to determine
cross-linking locations for intact proteins. For the first aim, a variety of monomeric and multimeric proteins will be
cross-linked in the gas-phase. Changes in overall structure between cross-linked and unmodified proteins, as
well as between solution and gas-phase cross-linked proteins, will be measured by IM. Under the second aim,
a combination of collision induced dissociation (CID) and electron capture dissociation (ECD) will be used to
determine cross-linked sites. The proposed technology is innovative because it represents a substantive
departure from the status quo by coupling cross-linking and native IM/MS analysis into one gas-phase mass
spectrometry experiment, allowing rapid cross-linking analysis and providing multiple complementary measures
of gas-phase protein structure. This new technology is significant because it is expected to become a rapid tool
for high-throughput characterization of primary, secondary, tertiary, and quaternary protein structure. When fully
developed, the technology has the potential to be used for complex mixtures of intact proteins and for rapid
screening of interactions with small molecules/drugs, creating new opportunities in clinical research, treatment,
and drug design.
项目概要
尽管存在许多用于研究蛋白质结构的技术,但没有一种技术能够兼具速度、
选择性、准确性、分辨率和灵活性。长期目标是使用一套气相化学方法
离子/离子反应与离子淌度 (IM) 和串联质谱 (MS) 测量相结合,可实现高
通量、几乎无需样品准备的蛋白质结构测量。本次探索性的总体目标
该项目是实现我们长期目标的下一步,是实施快速离子/离子交联
IM/MS 平台上的反应,使用串联质谱法来识别交联位点。理由
这项技术的发展是将来自本地IM/MS的信息与所获得的信息结合起来
来自在亚秒时间尺度上进行的实验方法中的交联。增加的
吞吐量、信息和样品制备的缺乏(与 X 射线衍射、核磁分析等相比)
共振或冷冻电子显微镜)有望推进确定蛋白质的生物医学研究
结构和功能使蛋白质结构测定变得快速和常规。整体
本应用的目标将通过以下具体目标来实现: 1. 结合气相离子/离子
通过 IM/MS 测量交联完整蛋白质; 2. 使用 IM 结合串联 MS 来确定
完整蛋白质的交联位置。对于第一个目标,各种单体和多聚体蛋白质将被
在气相中交联。交联和未修饰蛋白质之间整体结构的变化,如
以及溶液和气相交联蛋白之间的差异,将通过 IM 进行测量。在第二个目标下,
碰撞诱导解离(CID)和电子捕获解离(ECD)的组合将用于
确定交联位点。所提出的技术具有创新性,因为它代表了实质性的
通过将交联和本机 IM/MS 分析耦合到一个气相质量中来摆脱现状
光谱实验,允许快速交联分析并提供多种补充措施
气相蛋白质结构。这项新技术意义重大,因为它有望成为一种快速工具
用于一级、二级、三级和四级蛋白质结构的高通量表征。当完全
随着技术的发展,该技术有潜力用于完整蛋白质的复杂混合物和快速
筛选与小分子/药物的相互作用,为临床研究、治疗、
和药物设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Webb其他文献
Ian Webb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Webb', 18)}}的其他基金
Intrinsically Disordered Protein Structural Dynamics from Combined Solution and Gas-Phase Approaches
结合溶液和气相方法的本质无序蛋白质结构动力学
- 批准号:
10714896 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:














{{item.name}}会员




