Biological mechanisms and consequences of chlorate treatment on Pseudomonas aeruginosa chronic wound infections
氯酸盐治疗铜绿假单胞菌慢性伤口感染的生物学机制和后果
基本信息
- 批准号:9810001
- 负责人:
- 金额:$ 21.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active Biological TransportAddressAffectAminoglycosidesAmputationAnaerobic BacteriaAntibioticsBacteriaBiochemicalBiologicalBurn injuryCCRL2 geneCell DeathCell divisionCell membraneCellsChargeChloratesChronicCollaborationsCystic FibrosisDataDevelopmentDiabetic Foot UlcerDiabetic mouseDiabetic ulcerDimensionsDrug TargetingEffectivenessEnzymesExploratory/Developmental GrantExposure toEye InfectionsFoundationsGene ExpressionGenesGeneticGenetic ScreeningHodgkin DiseaseHomologous GeneHypoxiaIn SituIn VitroInfectionKnowledgeLaboratoriesLinkLower ExtremityLungMalignant neoplasm of prostateMammalsMeasuresMediatingMetabolismMicrobeMicrobial BiofilmsModelingMolecularNitrate ReductasesNitratesOutcomePathway interactionsPatientsPharmaceutical PreparationsPhysiologicalPopulationProdrugsPseudomonas aeruginosaPseudomonas aeruginosa infectionPublishingResearchResistanceRespirationTechniquesTestingTimeTobramycinTopical applicationToxic effectWorkWound HealingWound Infectionacute infectionanalogantibiotic tolerancebasechronic infectionchronic woundexperimental studyfollow-upfoothealingin vivoinhibitor/antagonistinsightmalignant breast neoplasmmortalitymouse modelmutantnon-healing woundsnovelpathogenpathogenic bacteriapolymicrobial biofilmprotein aggregationprotein foldingtransposon sequencingventilator-associated pneumonia
项目摘要
PROJECT SUMMARY
Pseudomonas aeruginosa is an opportunistic pathogen found in acute infections (burns, wounds, ventilator
associated pneumonia, eye infections) and chronic infections of the foot (diabetic ulcers) and lung (cystic
fibrosis) (1). This bacterium commonly survives in these contexts as a biofilm, the formation and high-level
antibiotic tolerance of which interferes with effective patient treatment. The hypoxic/anoxic, slowly-growing
biofilm core defines the subpopulation that is most tolerant of conventional drugs (2, 3). Yet few therapies
currently exist that target this recalcitrant group. Chronic nonhealing wounds typically contain biofilms
comprising facultative anaerobes such as P. aeruginosa, and affect millions of people annually worldwide (4).
Diabetic foot ulcers alone contribute to 80% of nontraumatic lower-extremity amputations and are associated
with 5-year mortality rates of 43-55%, higher than Hodgkin's disease, breast cancer or prostate cancer (5).
Nar-mediated nitrate respiration is a widespread anaerobic metabolism used by bacterial pathogens (6);
mammals lack a Nar homolog (7). Our recent in vitro work shows that chlorate specifically kills hypoxic/anoxic
biofilm subpopulations by co-opting Nar activity to produce a toxic product (8). The overall objective of this
proposal is to better understand the mechanism of chlorate toxicity and assess its utility as a pro-drug in a
chronic wound diabetic mouse model. Our hypothesis is that chlorate kills anoxic biofilm subpopulations
because it triggers protein aggregation, that biofilm development in vivo depends on Nar expression, and,
therefore, that topical application of chlorate will facilitate wound healing. Our hypothesis has been formulated
based on preliminary data that showed chlorate exposure upregulates genes involved in protein folding and
that P. aeruginosa develops into biofilm aggregates in the mouse model with dimensions that would be
expected to comprise hypoxic/anoxic subpopulations expressing Nar. In Aim 1, we will use targeted
biochemical approaches to test the hypothesis that chlorate toxicity is linked to protein aggregation, and an un-
biased genetic Tn-seq screen to identify determinants of chlorate resistance under nitrate-replete conditions. In
Aim 2, we will assess whether P. aeruginosa expresses Nar in vivo, and whether its expression is required for
biofilm development and can be hijacked by chlorate to kill antibiotic tolerant biofilm subpopulations, thus
accelerating wound healing. The proposed research is significant because it will provide new basic
understanding of the mechanisms underpinning chlorate toxicity, and allow us to better evaluate chlorate's
potential to be an effective pro-drug to target P. aeruginosa biofilms in the context of infection. The long-term
outcomes generated by this research are likely to provide insights that may be relevant to developing chlorate
as a novel treatment for polymicrobial biofilms in disparate infections.
项目总结
铜绿假单胞菌是一种在急性感染(烧伤、伤口、呼吸机)中发现的条件致病菌
相关肺炎、眼部感染)和慢性足部感染(糖尿病溃疡)和肺部慢性感染(囊性
纤维化)(1)。这种细菌通常以生物膜的形式存活在这些环境中,形成和高水平
对抗生素的耐受性干扰了有效的患者治疗。低氧/缺氧,生长缓慢
生物膜核心定义了对常规药物最耐受的亚群(2,3)。然而,很少有治疗方法
目前存在针对这一顽固群体的目标。慢性无法愈合的伤口通常含有生物膜
包括兼性厌氧菌,如铜绿假单胞菌,每年影响全球数百万人(4)。
仅糖尿病足溃疡就占非创伤性下肢截肢的80%,并与
5年死亡率为43-55%,高于霍奇金氏病、乳腺癌或前列腺癌(5)。
NAR介导的硝酸盐呼吸是细菌病原体广泛使用的厌氧代谢(6);
哺乳动物缺乏NAR同源基因(7)。我们最近的体外研究表明,氯酸盐可以特异性地杀死缺氧/缺氧
通过利用NAR活性来产生有毒产品的生物膜亚群(8)。这样做的总体目标是
建议更好地了解氯酸盐毒性的机制,并评估其作为一种促进药物在
慢性创面糖尿病小鼠模型。我们的假设是氯酸盐杀死缺氧生物膜亚群
因为它触发了蛋白质聚集,体内生物膜的发展依赖于NAR的表达,而且,
因此,局部使用氯酸盐将促进伤口愈合。我们的假设已经公式化了
根据初步数据显示,接触氯酸盐上调了涉及蛋白质折叠和蛋白质合成的基因
铜绿假单胞菌在小鼠模型中发育成生物膜聚集体,其尺寸将是
预计包括表达NAR的低氧/缺氧亚群。在目标1中,我们将使用目标
用生物化学方法检验氯酸盐毒性与蛋白质聚集有关的假说,以及一种非生物化学方法。
偏向遗传TN-SEQ筛选以确定硝酸盐充足条件下氯酸盐抗性的决定因素。在……里面
目的2,我们将评估铜绿假单胞菌在体内是否表达NAR,以及它的表达是否需要
生物膜的发育,并可被氯酸盐劫持,以杀死耐药生物膜亚群,从而
加速伤口愈合。建议的研究具有重要意义,因为它将提供新的基础
了解氯酸盐毒性的基础机制,并使我们能够更好地评估氯酸盐
在感染的情况下,有可能成为针对铜绿假单胞菌生物被膜的有效前药。长期的
这项研究产生的结果可能会为开发氯酸盐提供可能相关的见解
作为一种治疗不同感染中的多菌生物膜的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dianne K Newman其他文献
Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics
重新思考“次级”代谢:吩嗪抗生素的生理作用
- DOI:
10.1038/nchembio764 - 发表时间:
2006-01-18 - 期刊:
- 影响因子:13.700
- 作者:
Alexa Price-Whelan;Lars E P Dietrich;Dianne K Newman - 通讯作者:
Dianne K Newman
Biofilms as more than the sum of their parts: lessons from developmental biology
生物膜不只是其各部分的总和:来自发育生物学的教训
- DOI:
10.1016/j.mib.2024.102537 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:7.500
- 作者:
Georgia R Squyres;Dianne K Newman - 通讯作者:
Dianne K Newman
Dianne K Newman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dianne K Newman', 18)}}的其他基金
Testing the hypothesis that microbial energetic hijacking of the CF immune response selects for specific pathogens during lung function decline- Diversity Supplement
测试以下假设:微生物对 CF 免疫反应的能量劫持会在肺功能下降期间选择特定病原体 - Diversity Supplement
- 批准号:
10745232 - 财政年份:2023
- 资助金额:
$ 21.46万 - 项目类别:
Testing the hypothesis that microbial energetic hijacking of the CF immune response selects for specific pathogens during lung function decline
检验以下假设:CF 免疫反应的微生物能量劫持会在肺功能下降期间选择特定病原体
- 批准号:
10175023 - 财政年份:2020
- 资助金额:
$ 21.46万 - 项目类别:
Testing the hypothesis that microbial energetic hijacking of the CF immune response selects for specific pathogens during lung function decline
检验以下假设:CF 免疫反应的微生物能量劫持会在肺功能下降期间选择特定病原体
- 批准号:
10618780 - 财政年份:2020
- 资助金额:
$ 21.46万 - 项目类别:
Testing the hypothesis that microbial energetic hijacking of the CF immune response selects for specific pathogens during lung function decline
检验以下假设:CF 免疫反应的微生物能量劫持会在肺功能下降期间选择特定病原体
- 批准号:
10388211 - 财政年份:2020
- 资助金额:
$ 21.46万 - 项目类别:
Testing the hypothesis that microbial energetic hijacking of the CF immune response selects for specific pathogens during lung function decline- Diversity Supplement
测试以下假设:微生物对 CF 免疫反应的能量劫持会在肺功能下降期间选择特定病原体 - Diversity Supplement
- 批准号:
10818205 - 财政年份:2020
- 资助金额:
$ 21.46万 - 项目类别:
Biological mechanisms and consequences of efficient extracellular electron transfer in Pseudomonas aeruginosa
铜绿假单胞菌有效细胞外电子转移的生物学机制和后果
- 批准号:
10660729 - 财政年份:2017
- 资助金额:
$ 21.46万 - 项目类别:
Biological consequences of enzymatic inactivation of Pseudomonas pyocyanin
绿脓杆菌酶灭活的生物学后果
- 批准号:
9384435 - 财政年份:2017
- 资助金额:
$ 21.46万 - 项目类别:
Biological consequences of enzymatic inactivation of Pseudomonas pyocyanin
绿脓杆菌酶灭活的生物学后果
- 批准号:
9918822 - 财政年份:2017
- 资助金额:
$ 21.46万 - 项目类别:
Geobiological approaches to understanding pulmonary infections in situ
了解原位肺部感染的地球生物学方法
- 批准号:
8412666 - 财政年份:2012
- 资助金额:
$ 21.46万 - 项目类别:
Geobiological approaches to understanding pulmonary infections in situ
了解原位肺部感染的地球生物学方法
- 批准号:
8876780 - 财政年份:2012
- 资助金额:
$ 21.46万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 21.46万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 21.46万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 21.46万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 21.46万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 21.46万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 21.46万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 21.46万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 21.46万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 21.46万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 21.46万 - 项目类别:
Research Grant