Impact of Social Network Structure on Stroke Recovery
社交网络结构对中风康复的影响
基本信息
- 批准号:9150302
- 负责人:
- 金额:$ 15.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAgeAreaAutomobile DrivingBehaviorBehavior TherapyBiometryCaregiver BurdenCaregiversClinical InvestigatorClinical ResearchCommunitiesDataDevelopmentDiseaseEducational CurriculumElementsEmotionalFailureFamilyFriendshipsFutureGoalsHome environmentHumanHypertensionImpairmentIndividualInfluentialsInstitutionInterventionIntervention StudiesInterviewIschemic StrokeKnowledgeLeadMapsMeasuresMediatingMediationMediator of activation proteinMental DepressionMentored Patient-Oriented Research Career Development AwardMentorsMethodological StudiesMethodologyMethodsModelingMorbidity - disease rateNatural HistoryNatureNetwork-basedNeurologicNeurologistOutcomeOutcomes ResearchPathway AnalysisPatientsPersonsPhysical FunctionPlayPredictive ValueProspective cohort studyPublic HealthRecoveryRecruitment ActivityRegression AnalysisRehabilitation therapyResearchResearch PersonnelScienceScientistSeveritiesSocial EnvironmentSocial NetworkSocial isolationSocial supportStatistical Data InterpretationStrokeStructureSurveysTestingTimeTrainingUnited States National Institutes of HealthUniversitiesWashingtonWorkaddictionbasecareercohortdensitydesignexecutive functionfunctional outcomeshealth care service utilizationimprovedinnovationmembermultidisciplinarynovelpatient orientedprimary outcomeprofessorprogramspublic health relevancesecondary outcomesocialstroke recoverystroke survivortheories
项目摘要
DESCRIPTION (provided by applicant): Dr. Amar Dhand is a neurologist and young investigator who pursues patient-oriented clinical research on social networks structure and ischemic stroke recovery. A K23 award will allow Dr. Dhand to fulfill his long-term career goal of becoming an independent clinical investigator through training in three areas: advanced social network analysis, biostatistics, and intervention research. Dr. Dhand has recruited a multidisciplinary team of mentors and designed a detailed curriculum to accomplish this goal. This training will take place at Washington University in St. Louis, an institution with a long trak record of training clinician scientists. His mentors include Dr. Jin-Moo Lee, his primary advisor, who is a neurologist with expertise in translational stroke research, Dr. Doug Luke, a public health professor with expertise in social network analysis, and Dr. Catherine Lang, a rehabilitation investigator with expertise in longitudinal stroke outcomes research. His project begins with the understanding that social mechanisms in stroke recovery are influential and understudied. Social isolation is associated with poor recovery, while increased social support and community engagement is associated with improved recovery. Despite this knowledge, the mechanisms by which social factors influence recovery is unknown, and this has led to multiple social support interventions that have failed to improve stroke recovery or reduce caregiver burden. It is unknown whether this failure is due to an inappropriate social unit target (e.g., caregiver versus family versus friendship group), timing of intervention (e.g., immediately after stroke or delayed), or duration and potency of the program. To address this gap, he proposes a prospective cohort study of 200 stroke survivors using a novel methodology-social network analysis-to quantitatively map the social structure around a patient and its predictive value on recovery. Social network analysis is based on the theory that human behavior is most fully understood by analysis of the structure of social relations around an individual. These data may, subsequently, inform network interventions that have been efficacious in other diseases, such as addiction disorders and hypertension. We hypothesize that stroke survivors' personal social networks will become smaller and denser especially in those with more severe strokes, and certain network variables at stroke onset will independently predict functional outcomes through specific mediators. This hypothesis will be tested by the following specific aims: Aim 1 will determine changes in social network structure after stroke of varying severity; Aim 2 will assess the predictive value of social network variables at stroke onset on stroke outcomes; Aim 3 will determine the factors that mediate the relationship between social networks and stroke outcomes. This study is significant because it will show the natural history of network structures in stroke recovery, their relation to stroke outcomes, and the mediators between networks and recovery. This project is innovative because it introduces a novel analytical framework that challenges current social support models and improves the theoretical underpinnings of social support interventions.
描述(由申请人提供):Amar Dhand 博士是一位神经科医生和年轻研究者,致力于以患者为中心的社交网络结构和缺血性中风恢复的临床研究。 K23 奖项将使 Dhand 博士能够通过高级社交网络分析、生物统计学和干预研究三个领域的培训来实现其成为独立临床研究者的长期职业目标。 Dhand 博士招募了一支多学科导师团队,并设计了详细的课程来实现这一目标。此次培训将在圣路易斯华盛顿大学进行,该机构在培训临床科学家方面拥有悠久的历史。他的导师包括他的主要顾问 Jin-Moo Lee 博士(一位擅长转化中风研究的神经科医生)、Doug Luke 博士(一位擅长社交网络分析的公共卫生教授)和 Catherine Lang 博士(一位擅长纵向中风结果研究的康复研究员)。他的项目首先认识到中风康复中的社会机制具有影响力且研究不足。社会隔离与康复不良相关,而增加社会支持和社区参与则与康复改善相关。尽管有这些知识,但社会因素影响康复的机制尚不清楚,这导致了多种社会支持干预措施未能改善中风康复或减轻护理人员负担。目前尚不清楚这种失败是否是由于不适当的社会单位目标(例如,照顾者与家庭与友谊团体)、干预时间(例如,中风后立即或延迟)或计划的持续时间和效力造成的。为了解决这一差距,他提出了一项针对 200 名中风幸存者的前瞻性队列研究,使用一种新颖的方法——社交网络分析——来定量绘制患者周围的社会结构及其对康复的预测价值。社交网络分析基于这样的理论:通过分析个体周围的社会关系结构可以最充分地理解人类行为。随后,这些数据可能会为网络干预措施提供信息,这些干预措施对其他疾病(例如成瘾症和高血压)有效。我们假设中风幸存者的个人社交网络将变得更小、更密集,尤其是那些患有更严重中风的人,并且中风发作时的某些网络变量将通过特定的中介因素独立预测功能结果。该假设将通过以下具体目标进行检验: 目标 1 将确定不同严重程度的中风后社交网络结构的变化;目标 2 将评估中风发作时社交网络变量对中风结果的预测价值;目标 3 将确定调节社交网络与中风结果之间关系的因素。这项研究意义重大,因为它将展示中风恢复中网络结构的自然历史、它们与中风结果的关系以及网络和恢复之间的中介因素。该项目具有创新性,因为它引入了一种新颖的分析框架,挑战了当前的社会支持模型,并改善了社会支持干预措施的理论基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amar Dhand其他文献
Amar Dhand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amar Dhand', 18)}}的其他基金
Social networks and risk of delayed arrival to the hospital during stroke
社交网络和中风期间延迟到达医院的风险
- 批准号:
10611852 - 财政年份:2022
- 资助金额:
$ 15.67万 - 项目类别:
Social networks and risk of delayed arrival to the hospital during stroke
社交网络和中风期间延迟到达医院的风险
- 批准号:
10374360 - 财政年份:2022
- 资助金额:
$ 15.67万 - 项目类别:
SocialBit: Establishing the accuracy of a wearable sensor to detect social interactions after stroke
SocialBit:建立可穿戴传感器的准确性以检测中风后的社交互动
- 批准号:
10396124 - 财政年份:2020
- 资助金额:
$ 15.67万 - 项目类别:
SocialBit: Establishing the accuracy of a wearable sensor to detect social interactions after stroke
SocialBit:建立可穿戴传感器的准确性以检测中风后的社交互动
- 批准号:
9973762 - 财政年份:2020
- 资助金额:
$ 15.67万 - 项目类别:
SocialBit: Establishing the accuracy of a wearable sensor to detect social interactions after stroke
SocialBit:建立可穿戴传感器的准确性以检测中风后的社交互动
- 批准号:
10250357 - 财政年份:2020
- 资助金额:
$ 15.67万 - 项目类别:
Impact of Social Network Structure on Stroke Recovery
社交网络结构对中风康复的影响
- 批准号:
9899275 - 财政年份:2015
- 资助金额:
$ 15.67万 - 项目类别:
Impact of Social Network Structure on Stroke Recovery
社交网络结构对中风康复的影响
- 批准号:
9319474 - 财政年份:2015
- 资助金额:
$ 15.67万 - 项目类别:
Impact of Social Network Structure on Stroke Recovery
社交网络结构对中风康复的影响
- 批准号:
9033380 - 财政年份:2015
- 资助金额:
$ 15.67万 - 项目类别:
相似海外基金
Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
- 批准号:
10653464 - 财政年份:2023
- 资助金额:
$ 15.67万 - 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
- 批准号:
2316108 - 财政年份:2023
- 资助金额:
$ 15.67万 - 项目类别:
Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
- 批准号:
BB/V006738/1 - 财政年份:2020
- 资助金额:
$ 15.67万 - 项目类别:
Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
- 批准号:
10294664 - 财政年份:2020
- 资助金额:
$ 15.67万 - 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
- 批准号:
422882 - 财政年份:2019
- 资助金额:
$ 15.67万 - 项目类别:
Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 15.67万 - 项目类别:
Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
- 批准号:
9811094 - 财政年份:2019
- 资助金额:
$ 15.67万 - 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
- 批准号:
18K16103 - 财政年份:2018
- 资助金额:
$ 15.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
- 批准号:
1823881 - 财政年份:2018
- 资助金额:
$ 15.67万 - 项目类别:
Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
- 批准号:
369385245 - 财政年份:2017
- 资助金额:
$ 15.67万 - 项目类别:
Research Grants














{{item.name}}会员




