Multifunctional enzyme-like catalysts for organic synthesis
用于有机合成的多功能类酶催化剂
基本信息
- 批准号:9813085
- 负责人:
- 金额:$ 43.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAffectAlder plantAlkenesAlkylationAreaBindingBinding SitesBiologicalBiologyCatalysisCatalytic DomainChemical StructureChemicalsComplementComplexComputer SimulationCouplingDataDevelopmentDrug KineticsEnzymesFermentationGoalsHealthHumanImprove AccessIndolesInterdisciplinary StudyKineticsLaboratoriesLengthMediatingMedicineMissionModernizationModificationNatural ProductsNatureOrganic SynthesisOrganismOutcomePeptidesPharmaceutical PreparationsPharmacologic SubstanceProcessProductionPropertyPublic HealthPublishingReactionResourcesSideSiteSourceSpecificityStructureSynthesis ChemistrySystemThioureaTimeTransition ElementsUnited States National Institutes of HealthWorkbasecatalystchemical synthesiscostcost effectivedesigndrug candidatedrug discoveryimprovedinnovationnovelnovel therapeuticsscaffoldsmall moleculetool
项目摘要
Project Summary/Abstract
Natural products and derivatives are a significant potential source of new drug candidates due to their
high complexity and biological activity. However, chemical synthesis is often too time and resource-intensive to
enable timely development of natural product derivatives as drugs. In contrast, nature has an incredible
proficiency for the synthesis of complex chemical structures. Many organisms have evolved powerful enzymes
that have been used by chemists to produce natural products cost-effectively and in large quantities via
fermentation. However, it remains a significant challenge to modify the structure of natural products to improve
pharmacokinetic properties and increase efficacy. This proposal seeks to develop multifunctional catalysts that
mimic the synthetic efficiency of enzymes and benefit from the versatility of chemical synthesis. To accomplish
this, we will use structurally well-defined helical peptides to scaffold multiple catalysts (e.g. organocatalysts,
transition metals, Lewis acids) in close proximity to enable enzyme-like catalysis. Preliminary data from our
laboratory confirm that helical peptides can preorganize multiple catalysts in such a way to facilitate proximity-
accelerated reactivity and selectivity based on the binding of multiple substrates. In this proposal, we will first
optimize the efficiency of our enzyme-like catalysts to maximize the enhanced reactivity and selectivity already
observed to levels that approach the efficiency of natural enzymes. These efforts will be guided by predictive
computational models developed in our group. We will then capitalize on these proximity effects to rationally
design multifunctional catalysts and multi-catalyst systems that achieve unprecedented reactivity and enable
bond constructions that cannot be performed with traditional catalysts. We will also develop multifunctional
catalysts that overcome inherent reaction selectivity by preorganizing reacting partners to achieve novel
selectivity (regioselectivity, enantioselectivity). These efforts will enable new reactions that streamline the
synthetic process, improve access to complex molecules for drug discovery, and enable cost-effective
development of new medicines. The use of helix-templated catalysts will enable new synthetic strategies based
on the ability of the catalysts to bind and activate intermediates in close proximity, leading to lower step counts
in synthesis. By doing so, this project has the potential to greatly affect overall human health by advancing drug
discovery and enabling cost-effective production of new pharmaceuticals. The interdisciplinary research
proposed herein will enable significant innovation in synthetic chemistry, de novo enzyme design, and drug
discovery, and when successful, will have a broad impact in the areas of catalysis, synthetic design, and
medicine.
项目概要/摘要
天然产物和衍生物是新药候选物的重要潜在来源,因为它们具有以下特点:
高复杂性和生物活性。然而,化学合成往往过于耗时和资源密集,无法实现。
能够及时开发作为药物的天然产物衍生物。相比之下,大自然有着令人难以置信的
熟练合成复杂的化学结构。许多生物体已经进化出强大的酶
化学家已使用它们来经济有效地大量生产天然产品
发酵。然而,改变天然产物的结构以改善天然产物的性能仍然是一个重大挑战。
药代动力学特性并提高疗效。该提案旨在开发多功能催化剂
模仿酶的合成效率并受益于化学合成的多功能性。为了完成
为此,我们将使用结构明确的螺旋肽来支撑多种催化剂(例如有机催化剂、
过渡金属、路易斯酸)非常接近,以实现类似酶的催化作用。我们的初步数据
实验室证实,螺旋肽可以预先组织多个催化剂,以促进接近-
基于多种底物的结合加速反应性和选择性。在这个提案中,我们首先
优化我们的类酶催化剂的效率,以最大限度地提高反应活性和选择性
观察到接近天然酶效率的水平。这些努力将以预测为指导
我们小组开发的计算模型。然后我们将利用这些邻近效应来理性地
设计多功能催化剂和多催化剂系统,实现前所未有的反应活性并实现
传统催化剂无法实现的键结构。我们还将开发多功能
通过预组织反应伙伴克服固有反应选择性以实现新颖的催化剂
选择性(区域选择性、对映选择性)。这些努力将促成新的反应,从而简化
合成过程,改善药物发现中复杂分子的获取,并实现成本效益
新药的开发。螺旋模板催化剂的使用将实现基于
催化剂结合并激活附近中间体的能力,从而减少步数
在合成中。通过这样做,该项目有可能通过推进药物发展来极大地影响人类的整体健康
发现并实现新药物的经济高效生产。跨学科研究
本文提出的方案将实现合成化学、从头酶设计和药物方面的重大创新
发现一旦成功,将在催化、合成设计和
药品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID JOHN MICHAELIS其他文献
DAVID JOHN MICHAELIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID JOHN MICHAELIS', 18)}}的其他基金
Total Synthesis of Cytotoxic ent-Kauranoid Natural Products
细胞毒性对映贝壳杉素天然产物的全合成
- 批准号:
8059704 - 财政年份:2010
- 资助金额:
$ 43.65万 - 项目类别:
Total Synthesis of Cytotoxic ent-Kauranoid Natural Products
细胞毒性对映贝壳杉素天然产物的全合成
- 批准号:
7908295 - 财政年份:2010
- 资助金额:
$ 43.65万 - 项目类别:
Total Synthesis of Cytotoxic ent-Kauranoid Natural Products
细胞毒性对映贝壳杉素天然产物的全合成
- 批准号:
8245070 - 财政年份:2010
- 资助金额:
$ 43.65万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




