Multifunctional enzyme-like catalysts for organic synthesis
用于有机合成的多功能类酶催化剂
基本信息
- 批准号:9813085
- 负责人:
- 金额:$ 43.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAffectAlder plantAlkenesAlkylationAreaBindingBinding SitesBiologicalBiologyCatalysisCatalytic DomainChemical StructureChemicalsComplementComplexComputer SimulationCouplingDataDevelopmentDrug KineticsEnzymesFermentationGoalsHealthHumanImprove AccessIndolesInterdisciplinary StudyKineticsLaboratoriesLengthMediatingMedicineMissionModernizationModificationNatural ProductsNatureOrganic SynthesisOrganismOutcomePeptidesPharmaceutical PreparationsPharmacologic SubstanceProcessProductionPropertyPublic HealthPublishingReactionResourcesSideSiteSourceSpecificityStructureSynthesis ChemistrySystemThioureaTimeTransition ElementsUnited States National Institutes of HealthWorkbasecatalystchemical synthesiscostcost effectivedesigndrug candidatedrug discoveryimprovedinnovationnovelnovel therapeuticsscaffoldsmall moleculetool
项目摘要
Project Summary/Abstract
Natural products and derivatives are a significant potential source of new drug candidates due to their
high complexity and biological activity. However, chemical synthesis is often too time and resource-intensive to
enable timely development of natural product derivatives as drugs. In contrast, nature has an incredible
proficiency for the synthesis of complex chemical structures. Many organisms have evolved powerful enzymes
that have been used by chemists to produce natural products cost-effectively and in large quantities via
fermentation. However, it remains a significant challenge to modify the structure of natural products to improve
pharmacokinetic properties and increase efficacy. This proposal seeks to develop multifunctional catalysts that
mimic the synthetic efficiency of enzymes and benefit from the versatility of chemical synthesis. To accomplish
this, we will use structurally well-defined helical peptides to scaffold multiple catalysts (e.g. organocatalysts,
transition metals, Lewis acids) in close proximity to enable enzyme-like catalysis. Preliminary data from our
laboratory confirm that helical peptides can preorganize multiple catalysts in such a way to facilitate proximity-
accelerated reactivity and selectivity based on the binding of multiple substrates. In this proposal, we will first
optimize the efficiency of our enzyme-like catalysts to maximize the enhanced reactivity and selectivity already
observed to levels that approach the efficiency of natural enzymes. These efforts will be guided by predictive
computational models developed in our group. We will then capitalize on these proximity effects to rationally
design multifunctional catalysts and multi-catalyst systems that achieve unprecedented reactivity and enable
bond constructions that cannot be performed with traditional catalysts. We will also develop multifunctional
catalysts that overcome inherent reaction selectivity by preorganizing reacting partners to achieve novel
selectivity (regioselectivity, enantioselectivity). These efforts will enable new reactions that streamline the
synthetic process, improve access to complex molecules for drug discovery, and enable cost-effective
development of new medicines. The use of helix-templated catalysts will enable new synthetic strategies based
on the ability of the catalysts to bind and activate intermediates in close proximity, leading to lower step counts
in synthesis. By doing so, this project has the potential to greatly affect overall human health by advancing drug
discovery and enabling cost-effective production of new pharmaceuticals. The interdisciplinary research
proposed herein will enable significant innovation in synthetic chemistry, de novo enzyme design, and drug
discovery, and when successful, will have a broad impact in the areas of catalysis, synthetic design, and
medicine.
项目总结/摘要
天然产物和衍生物是新候选药物的重要潜在来源,这是由于它们的
高复杂性和生物活性。然而,化学合成通常太耗时且资源密集,
能够及时开发天然产物衍生物作为药物。相比之下,大自然有一个令人难以置信的
熟练掌握复杂化学结构的合成。许多生物进化出了强大的酶
化学家们已经用它来生产天然产品,
发酵然而,改变天然产物的结构以改善其生物学特性仍然是一个重大挑战。
药代动力学特性和增加功效。该提议寻求开发多功能催化剂,
模拟酶的合成效率并受益于化学合成的多功能性。完成
为此,我们将使用结构明确的螺旋肽来支撑多种催化剂(例如有机催化剂,
过渡金属、刘易斯酸)紧密接触以实现酶样催化。我们的初步数据显示,
实验室证实,螺旋肽可以预先组织多种催化剂,
基于多种底物结合的加速反应性和选择性。在这份提案中,我们将首先
优化我们的类酶催化剂的效率,以最大限度地提高反应性和选择性,
观察到接近天然酶效率的水平。这些努力将以预测性的
在我们的团队中开发的计算模型。然后,我们将利用这些邻近效应,
设计多功能催化剂和多催化剂系统,实现前所未有的反应性,
不能用传统催化剂进行的键合结构。我们还将开发多功能
催化剂通过预组织反应伙伴来克服固有的反应选择性,
选择性(区域选择性,对映选择性)。这些努力将促成新的反应,
合成过程,改善获得复杂分子用于药物发现,并实现成本效益
开发新药。螺旋模板化催化剂的使用将使得基于螺旋模板化催化剂的新的合成策略成为可能。
催化剂结合和活化紧邻的中间体的能力,导致更低的步数
在合成中。通过这样做,该项目有可能通过推进药物治疗,
发现和实现具有成本效益的新药生产。跨学科研究
本文提出的方法将使合成化学、从头酶设计和药物合成中的重大创新成为可能。
发现,并成功时,将在催化,合成设计,
药
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID JOHN MICHAELIS其他文献
DAVID JOHN MICHAELIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID JOHN MICHAELIS', 18)}}的其他基金
Total Synthesis of Cytotoxic ent-Kauranoid Natural Products
细胞毒性对映贝壳杉素天然产物的全合成
- 批准号:
8059704 - 财政年份:2010
- 资助金额:
$ 43.65万 - 项目类别:
Total Synthesis of Cytotoxic ent-Kauranoid Natural Products
细胞毒性对映贝壳杉素天然产物的全合成
- 批准号:
7908295 - 财政年份:2010
- 资助金额:
$ 43.65万 - 项目类别:
Total Synthesis of Cytotoxic ent-Kauranoid Natural Products
细胞毒性对映贝壳杉素天然产物的全合成
- 批准号:
8245070 - 财政年份:2010
- 资助金额:
$ 43.65万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Studentship














{{item.name}}会员




