Targeting the LpqY-SugABC transporter system for synergistic anti-TB compounds
靶向 LpqY-SugABC 转运蛋白系统以获得协同抗结核化合物
基本信息
- 批准号:9813139
- 负责人:
- 金额:$ 44.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdherenceAnabolismAnti-Bacterial AgentsAntibioticsAntitubercular AgentsBacillus (bacterium)BacteriaBypassCause of DeathCell WallCellsCessation of lifeCombined Modality TherapyComplementComplexCord FactorsDataDevelopmentDisaccharidesDiseaseDrug TargetingDrug ToleranceDrug resistanceEnzymesExposure toFluoresceinFluorescein-5-isothiocyanateGenesGenetic TranscriptionGlycolipidsGoalsGranulomaGrowthHumanIn VitroInfectionKineticsKnock-outLabelLaboratoriesLeadMammalsMetabolicMetabolic PathwayMoxifloxacinMusMycobacterium tuberculosisNutrientPathway interactionsPermeabilityPharmaceutical PreparationsPhenotypePlayProcessProteinsProteomicsRecyclingResistanceResistance developmentRifampinRoleStressSurfaceSystemTestingTimeTomatoesTrehaloseTuberculosisVirulence Factorsanalogantimicrobialbactericidebasecell growthdrug developmentefficacy testingextensive drug resistanceextracellularfitnesshuman pathogenin vivointerestisoniazidmacrophagemycobacterialnovel therapeuticspathogenresistant strainresponsescreeningsuccesssugarsynergismtooltreatment durationtuberculosis drugstuberculosis treatmentuptake
项目摘要
ABSTRACT
M. tuberculosis (Mtb) is a highly successful human pathogen that remains one of the world's major causes of
illness and death. The emergence of multi and extensively drug resistant strains of Mtb raises concern about
untreatable tuberculosis (TB) and demands the development of unconventional therapies to shorten the TB
treatment and to effectively eradicate subpopulation of the drug-tolerant bacteria. Mtb takes several days to die
following incubation with lethal concentrations of compounds in vitro and in vivo. Our laboratory have
identified the global metabolic remodeling of Mtb during exposure to each class of available anti-TB drugs and
discovered “escape” pathways and enzymes, simultaneously belonging to number of diverse metabolic
pathways, allowing the pathogen to shift the transcriptional response and survive longer, even in presence of
bactericidal compounds. One of the synergistic targets identified in our study is the LpqY-SugABC transporter
system involved in the uptake and recycling of the disaccharide trehalose, a constituent of the mycobacterial
cell wall. The transporter genes of LpqY system are non-essential for Mtb growth in vitro, however, they are
vital for survival in nutrient-deprived microenvironment of host cells and for growth in vivo. Our preliminary
data shows that the LpqY system can serve as the promising drug-target that has a synergistic effect with
existing anti-TB drugs, killing Mtb faster in vitro and in macrophages. The overall goal of this project is to
identify antimicrobials that inhibit the function of LpqY-SugABC. While the Mtb knockout clone of the LpqY-
SugABC fails to internalize and process the extracellular trehalose in vitro and in infected macrophages, using
the complemented clone, we can demonstrate that the specific incorporation of trehalose probe occurs via the
LpqY system in vitro as well as during infection of THP-1 macrophages. Therefore, in the Aim 1a, we will
achieve the high-throughput phenotypic screening by utilizing the fluorescein-labeled trehalose, and will
identify active compounds that can block metabolic labeling of Mtb and, consequently, the function of the
LpqY transporter system directly within infected human macrophages. By utilizing the tomato red protein-
expressing Mtb strain in the Aim 1a, we will simultaneously distinguish if identified compounds have an
inhibitory effect on intracellular Mtb growth as well. The Aim 1b will establish the killing kinetics of identified
compounds in vitro, and will test efficacy and synergy with frontline anti-TB drugs against Mtb during infection
of macrophages. In the Aim 1c, we will determine which component of the LpqY-SugABC system is targeted
by each compound identified in this study. The proposal uses the rationally discovered target that contributes to
intrinsic resistance and drug-tolerant phenotype of Mtb promoting bacterial survival within host macrophages.
Equally significant factor is that inactivation of the LpqY system synergistically accelerates Mtb killing by
current anti-TB compounds and, thus, the proposed screening has the potential to lead to novel drugs that can
shorter therapy time and decrease chances for development of the drug resistance and persistence mechanisms.
摘要
M.结核病(Mtb)是一种非常成功的人类病原体,仍然是世界上主要的结核病病因之一
疾病和死亡。多重和广泛耐药的结核分枝杆菌菌株的出现引起了人们的关注,
无法治愈的结核病(TB),并要求开发非常规疗法以缩短TB
治疗和有效地根除耐药细菌的亚群。结核病需要几天才能死亡
在体外和体内与致死浓度的化合物孵育后。我们的实验室有
确定了在暴露于每类可用的抗结核药物期间Mtb的总体代谢重塑,
发现了"逃逸"途径和酶,同时属于许多不同的代谢
途径,允许病原体转移转录反应并存活更长时间,即使在存在
杀菌化合物在我们的研究中确定的协同作用靶点之一是LpqY-SugABC转运蛋白
系统参与吸收和回收的二糖海藻糖,一个组成部分的分枝杆菌
细胞壁LpqY系统的转运蛋白基因对结核分枝杆菌体外生长是非必需的,但是,它们是
对于宿主细胞在营养缺乏的微环境中的存活和体内生长至关重要。我们的初步
数据表明,LpqY系统可以作为有前途的药物靶点,与
现有的抗结核药物,在体外和巨噬细胞中更快地杀死Mtb。该项目的总体目标是
鉴定抑制LpqY-SugABC功能的抗微生物剂。而LpqY-的Mtb敲除克隆
SugABC在体外和感染的巨噬细胞中不能内化和加工胞外海藻糖,
互补克隆,我们可以证明海藻糖探针的特异性掺入是通过
LpqY系统在体外以及在THP-1巨噬细胞感染期间。因此,在目标1a中,我们将
利用荧光素标记的海藻糖实现高通量表型筛选,
鉴定可以阻断Mtb的代谢标记的活性化合物,并因此,
直接在受感染的人巨噬细胞内的LpqY转运系统。利用番茄红蛋白-
在Aim 1a中表达Mtb菌株,我们将同时区分鉴定的化合物是否具有
对细胞内Mtb生长也有抑制作用。目标1b将确定已鉴定的
化合物,并将测试在感染期间与一线抗结核药物对抗结核分枝杆菌的功效和协同作用
巨噬细胞在目标1c中,我们将确定LpqY-SugABC系统的哪一个组件是目标
在这项研究中发现的每一种化合物。该提案使用了合理发现的目标,
Mtb内在抗性和药物耐受表型促进宿主巨噬细胞内细菌存活。
同样重要的因素是LpqY系统的失活通过以下方式协同加速Mtb杀伤:
目前的抗结核化合物,因此,拟议的筛选有可能导致新药,
缩短治疗时间,减少耐药性和持久性机制发展的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lia Danelishvili其他文献
Lia Danelishvili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 44.44万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 44.44万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 44.44万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 44.44万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 44.44万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 44.44万 - 项目类别:
Discovery Early Career Researcher Award