The Role of Visual Experience in the Maturation of Synaptic and Dendritic Mechanisms for Direction Selectivity

视觉体验在突触和树突方向选择性机制成熟中的作用

基本信息

  • 批准号:
    9812768
  • 负责人:
  • 金额:
    $ 3.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

-­ Project Summary -­       The goal of this proposal is to determine the role of activity in the development of the circuits that  mediate direction selectivity in the retina. Direction selective ganglion cells (DSGCs) fire many action potentials  in response to light stimuli moving in a preferred direction and few action potentials to light moving in the  opposite, or null, direction. Our lab has used population calcium imaging of DSGCs, whose preferred directions  tightly cluster around the four cardinal axes of visual space, to show that depriving animals of visual experience  reduces the clustering of preferred directions. Dark-­reared adult DSGCs were instead broadly distributed in  their preferred directions, similar to DSGCs tuning observed at eye opening. However, the mechanism by  which dark-­rearing prevents clustering remains unknown. This prompts an investigation of the role of visual  experience in the maturation of mechanisms for the direction-­selective computation.  There  are  two  important  circuit  elements  for  direction  selectivity.  First,  asymmetric  release  of  gamma-­ aminobutyric acid (GABA) from starburst amacrine cells dendrites confers direction selective tuning to DSGCs  through  asymmetric  synaptic  wiring.  Second,  DGSC  dendrites  integrate  inputs  in  a  directional  manner.  This  second  mechanism  is  revealed  in  a  subtype  of  DSGC,  the  ventral-­preferring  DSGCs,  which  exhibit  inhibitory-­ independent directional tuning, speculated to arise from their asymmetric dendrites.   In  this  proposal,  I  explore  the  contribution  of  synaptic  and  dendritic  mechanisms  to  directional  tuning  across  development.  I  focus  on  these  ventral-­preferring  DSGCs  to  dissect  the  relative  contributions  of  asymmetric  inhibition  and  asymmetric  dendrites  to  directional  tuning  during  development.  Asymmetric  inhibitory input from starburst amacrine cells has been shown to establish directional tuning in DSGCs around  the time of eye-­opening, by forming more synapses on the null side. As a first step towards understanding the  contribution  of  synaptic  mechanisms  for  establishing  directional  tuning,  in  Aim  1,  I  will  use  electrophysiology,  pharmacology  and  cellular  reconstructions  to  examine  the  contribution  of  inhibitory  input  on  directional  tuning  during development (Aim 1.1, 1.2). Next, I will test whether activity, mediated by asymmetric inhibitory input, is  necessary  for  establishing  directional  tuning  and  asymmetric  dendrites  in  a  mouse  model  where  that  lacks  functional  GABA  release  in  SACs  (Aim  1.3).  To  understand  the  contribution  of  asymmetric  dendrites  to  inhibitory-­independent  tuning  of  DSGCs,  in  Aim  2,  I  propose  to  use  simultaneous  2-­photon  calcium  imaging  and  visual  stimulation  of  dendrites.  I  ask whether  active  conductances  in  the  dendrites  of  DSGCs  exist,  and  if  so,  I  propose  to  use  localized  pharmacological  manipulations  uncover  the  ion  channels  mediating  these  nonlinear  conductances,  across  development.  Lastly,  in  Aim  3,  I  propose  to  rear  animals  in  the  dark  to  examine  how  activity,  mediated  by  visual  experience,  alters  both  the  synaptic  physiology  and  dendritic  computation  of  directional  selectivity.  These  findings  will  provide  key  insights  into  how  early  signaling  in  the  retina contributes to development of functional neural circuits.
- 项目总结 -       该提案的目标是确定活动在电路开发中的作用,  调节视网膜的方向选择性。 方向选择性神经节细胞 (DSGC) 激发许多动作电位  对沿首选方向移动的光刺激做出反应,并且对沿该方向移动的光几乎没有动作电位  相反或空方向。 我们的实验室使用了 DSGC 的群体钙成像,其首选方向  紧密聚集在视觉空间的四个基本轴周围,以表明剥夺动物的视觉体验  减少首选方向的聚集。 深色饲养的成年 DSGC 广泛分布于  他们的首选方向,类似于张开眼睛时观察到的 DSGC 调谐。 然而,该机制由  黑暗饲养如何防止聚类仍然未知。 这促使人们对视觉的作用进行调查  方向选择计算机制成熟的经验。  有两个重要的电路元件用于方向选择性。  首先,伽玛-的不对称释放 来自星爆无长突细胞树突的氨基丁酸 (GABA) 赋予 DSGC 方向选择性调节  通过不对称的突触布线。  其次,DGSC 树突以定向方式整合输入。  这  第二个机制是在 DSGC 的一个亚型中揭示的,即腹侧偏好的 DSGC,它表现出抑制性 独立的方向调谐,推测是由它们的不对称树突引起的。   在这个提案中,我探索了突触和树突机制对方向调节的贡献  跨越发展。  我专注于这些腹侧偏好 DSGC 来剖析以下各项的相对贡献  不对称抑制和不对称树突在发育过程中的定向调节。  不对称  来自星爆无长突细胞的抑制输入已被证明可以在周围的 DSGC 中建立定向调节  张开眼睛的时间,通过在空侧形成更多突触。 作为理解的第一步  突触机制对建立定向调节​​的贡献,在目标 1 中,我将使用电生理学,  药理学和细胞重建,以检查抑制输入对方向调节的贡献  开发期间(目标 1.1、1.2)。 接下来,我将测试由不对称抑制输入介导的活动是否是  对于在小鼠模型中建立定向调节​​和不对称树突是必要的,而小鼠模型缺乏  SAC 中功能性 GABA 释放(目标 1.3)。  了解不对称树突对  DSGC 的抑制独立调节,在目标 2 中,我建议使用同步 2 光子钙成像  以及树突的视觉刺激。  我问 DSGC 的树突中是否存在活性电导,以及是否存在  因此,我建议使用局部药理学操作来揭示介导这些的离子通道  跨越发展的非线性电导。  最后,在目标 3 中,我建议在黑暗中饲养动物  检查由视觉体验介导的活动如何改变突触生理学和树突  方向选择性的计算。  这些发现将提供关于早期信号传导的关键见解。  视网膜有助于功能性神经回路的发育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Malak El-Quessny其他文献

Malak El-Quessny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Malak El-Quessny', 18)}}的其他基金

The Role of Visual Experience in the Maturation of Synaptic and Dendritic Mechanisms for Direction Selectivity
视觉体验在突触和树突方向选择性机制成熟中的作用
  • 批准号:
    9973196
  • 财政年份:
    2018
  • 资助金额:
    $ 3.98万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 3.98万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 3.98万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 3.98万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 3.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 3.98万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 3.98万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 3.98万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 3.98万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 3.98万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 3.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了