Sensory mechanisms in brain capillary endothelial cells that initiate functional hyperemia
脑毛细血管内皮细胞启动功能性充血的感觉机制
基本信息
- 批准号:9812787
- 负责人:
- 金额:$ 5.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnkyrinsArchitectureAreaAstrocytesBindingBiosensorBlood VesselsBlood capillariesBlood flowBrainBrain regionCapillary Endothelial CellCell membraneCerebrovascular CirculationCerebrumComplexConsumptionCoupledDataDevelopmentDiseaseElectrophysiology (science)Endothelial CellsEnsureGap JunctionsGenerationsGlucoseGlutamatesGoalsHumanHyperemiaImageInternetKnockout MiceLaser Scanning MicroscopyLaser-Doppler FlowmetryLeadMeasurementMeasuresMediatingMetabotropic Glutamate ReceptorsMicrocirculationMicroscopyModelingMolecularMusNatureNeuronsOxygenOxygen ConsumptionPathway interactionsPhospholipase CPhospholipases APhysiologicalPreparationProcessProteinsReactive Oxygen SpeciesRegulationResolutionRoleSensorySignal PathwaySignal TransductionSmooth Muscle MyocytesSomatosensory CortexStrokeSynapsesTRPA1 ChannelTechniquesTestingVascular Cognitive ImpairmentVasodilator AgentsVibrissaebarrel cortexcerebral capillaryimprovedin vivometabotropic glutamate receptor 5neurovascular couplingnovelparenchymal arteriolespatch clampreceptorresponsesensorsensory mechanismsomatosensorytwo-photon
项目摘要
Neurovascular coupling (NVC) is the distinctive process within the cerebral circulation by which local cerebral
blood flow (CBF) is precisely directed to active brain regions. NVC is indispensible for all brain functions,
reflecting the fact that central neurons have little capacity to store energetic substrates and require prompt
delivery of metabolites that are rapidly consumed during synaptic activity. An emerging conceptual paradigm
envisions the hundreds of miles of capillaries in the human brain as a sensory web that mediates NVC by
detecting elevated neuronal activity and initiating a propagating dilatory signal to produce a local, functional
hyperemic response. The overall goals of this proposal are to identify novel sensory mechanisms intrinsic to
brain capillary endothelial cells (ECs) that rapidly detect increases in neuronal activity and to elucidate how
such signals propagate and act on the cerebral microcirculation to trigger functional hyperemia. We propose
the novel mechanistic hypothesis that type 5 metabotropic glutamate receptors (mGluR5s) are present on
brain capillary ECs and, when stimulated by glutamate released from astrocytic endfeet, initiate dilation of
upstream parenchymal arterioles (PAs). The goal of Aim 1 is to elucidate the intracellular signaling
mechanisms initiated by mGluR5s on brain capillary EC that trigger dilation of upstream PAs. We will test the
hypothesis that mGluR5 initiates a Gq/11/PLC signaling cascade that leads to increased reactive oxygen
species (ROS) generation and Ca2+ influx through TRPA1 channels to trigger dilation of upstream PAs.
Proposed studies will use Ca2+ and ROS imaging, patch-clamp electrophysiology of native brain capillary ECs,
and a newly developed ex vivo arteriolar-capillary preparation that provide an ideal reduced setting for
assessing the role of brain capillaries in regulating the upstream vasculature. The goal of Aim 2 is to elucidate
the intercellular signaling mechanisms responsible for conducted dilation of upstream PAs in response to
stimulation of mGluR5s on brain capillary ECs. We will test the hypothesis that glutamate binds to mGluR5s,
leading to activation of TRPA1 and the generation of intercellular Ca2+ waves that propagate to upstream PAs
to signal dilation. Proposed studies will use high-resolution Ca2+ imaging of the cerebral microcirculation and
super-resolution microscopy to establish the architecture of Ca2+ signaling complexes in brain capillaries. The
goal of Aim 3 is to test the hypothesis that mGluR5s on brain capillary ECs stimulate functional hyperemia in
vivo. These studies will use two-photon laser-scanning microscopy to measure mGluR5- and TRPA1-
dependent changes in RBC flux and Ca2+ signaling in capillaries in vivo, as well as laser Doppler flowmetry to
measure changes in CBF in the somatosensory cortex in response to whisker stimulation. The use of novel
EC-specific Ca2+ biosensor mice and EC-specific mGluR5- and TRPA1-knockout mice strengthens our
approach in all aims. Anticipated findings will support a new model of NVC in which neuronal activity stimulates
glutamate release near capillaries to activate mGluR5s on ECs, which initiate localized increases in blood flow.
神经血管耦合(NVC)是脑循环中的一个特殊过程
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Earley其他文献
Scott Earley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Earley', 18)}}的其他基金
Mechanisms of Functional Vascular Impairment In Genetic Models of Cerebral Small Vessel Disease
脑小血管疾病遗传模型中功能性血管损伤的机制
- 批准号:
10612694 - 财政年份:2022
- 资助金额:
$ 5.24万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10321551 - 财政年份:2021
- 资助金额:
$ 5.24万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10549399 - 财政年份:2021
- 资助金额:
$ 5.24万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10326059 - 财政年份:2021
- 资助金额:
$ 5.24万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10092017 - 财政年份:2021
- 资助金额:
$ 5.24万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10551292 - 财政年份:2021
- 资助金额:
$ 5.24万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10326050 - 财政年份:2021
- 资助金额:
$ 5.24万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10761870 - 财政年份:2021
- 资助金额:
$ 5.24万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10549397 - 财政年份:2021
- 资助金额:
$ 5.24万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10761880 - 财政年份:2021
- 资助金额:
$ 5.24万 - 项目类别:
相似海外基金
UNDERSTANDING THE INTERACTION OF ANKYRINS AND NANOMATERIALS
了解锚蛋白和纳米材料的相互作用
- 批准号:
8403578 - 财政年份:2007
- 资助金额:
$ 5.24万 - 项目类别:
UNDERSTANDING THE INTERACTION OF ANKYRINS AND NANOMATERIALS
了解锚蛋白和纳米材料的相互作用
- 批准号:
8601532 - 财政年份:2007
- 资助金额:
$ 5.24万 - 项目类别:
UNDERSTANDING THE INTERACTION OF ANKYRINS AND NANOMATERIALS
了解锚蛋白和纳米材料的相互作用
- 批准号:
8214426 - 财政年份:2007
- 资助金额:
$ 5.24万 - 项目类别:














{{item.name}}会员




