TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
基本信息
- 批准号:10321551
- 负责人:
- 金额:$ 86.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:ANK1 geneAddressAgingArchitectureBasic ScienceBloodBlood VesselsBlood flowBrainBrain regionCapillary Endothelial CellCellsCerebral small vessel diseaseCerebrovascular DisordersCerebrovascular systemCerebrumChemicalsCollaborationsCollectionDevelopmentDiseaseEndocrineEndotheliumEnsureFamilyGeneticGenetic ModelsGoalsHealthHomeostasisInvestigationIon ChannelIschemiaKnowledgeMetabolicMicrocirculationMicroscopyPerfusionPhysiological ProcessesProcessReactive Oxygen SpeciesResearchResearch DesignResearch PersonnelResourcesRoleSensorySeriesSignal TransductionSmooth Muscle MyocytesStimulusStrokeTRP channelTRPA channelTestingVanilloidage relatedarteriolebiomedical imagingbrain healthcerebral arterycerebral capillarycerebral microvasculaturecerebrovascularcerebrovascular pathologydetectorimaging approachmouse modelnanoscaleneurochemistryneurovascular couplingnext generationparacrinepressurepreventresponsesensorvascular cognitive impairment and dementiavasoconstriction
项目摘要
PROJECT SUMMARY
Optimal flow of blood within the brain is ensured by two processes: (1) autoregulation, a collection of intrinsic
mechanisms that continuously adjust the microcirculation to maintain a constant flow of blood in the face of
changes in perfusion pressure, and (2) neurovascular coupling, an ensemble of cerebral vasculature
physiological processes that tightly match local blood flow to the needs of metabolically active regions of the
brain. These distinctive responses are necessary for brain health and function but remain incompletely
understood. Further, loss of microvascular control is associated with common age-related cerebrovascular
pathologies, including stroke, cerebral small vessel diseases (cSVDs), and vascular cognitive impairment and
dementia (VCID). The overarching goal of this proposal is to address this critical knowledge gap by providing a
better understand of how the brain’s ever-changing milieu of physical, environmental, endocrine, paracrine,
metabolic, and neurochemical stimuli are sensed by the cerebral microvasculature at the cellular level, and how
these signals are processed to ensure homeostasis and adaptability. The primary mechanistic focus of our
research is ion channels of the transient receptor potential (TRP) family—polymodal sensors of many types of
physical and chemical stimuli present in all cells. Over the past 10 years, our research team has discovered that
TRPM4 (TRP melastatin 4) and TRPML1 (TRP mucolipin 1) channels in cerebral vascular smooth muscle cells
are important for the development of myogenic tone, a fundamental autoregulatory mechanism, and has
demonstrated critical sensory roles for TRPA1 (TRP ankyrin 1) and TRPV3 (TRP vanilloid 3) channels on the
endothelium of cerebral arteries and arterioles. Continuing with this theme and using advanced biomedical
imaging approaches and next-generation genetic mouse models, we will weave together the central concepts
established by our independent projects to develop a comprehensive overview of TRP channels as cellular
sensors in the cerebral microvasculature. Examples of proposed studies include investigations that will define
the nanoscale architecture of TRP channel signaling networks in health and disease using superresolution
microscopy, elucidate how TRPML1 channels are endogenously regulated in smooth muscle cells to prevent
vascular hypercontractility during myogenic vasoconstriction, and test the hypothesis that TRPA1 channels on
brain capillary endothelial cells act as detectors of reactive oxygen species to promote neurovascular coupling.
We will layer basic science investigations intended to elucidate fundamental regulatory mechanisms with
research designed to understand how processes controlled by TRP channels go wrong and contribute to the
transformation of healthy small vessels in the brain to a disease state during aging. To further this goal, we are
developing and characterizing new genetic models of age-related cSVDs and VCID in collaboration with
investigators at UCSF, and propose to use this unique resource to explore themes that include the involvement
of TRPM4, TRPML1, and TRPA1 channels in cerebral vascular dysfunction during age-related cSVDs and VCID.
项目摘要
脑内血液的最佳流动通过两个过程来确保:(1)自动调节,一种内在的调节机制,
持续调节微循环的机制,以保持恒定的血流,
灌注压的变化,以及(2)神经血管耦合,脑血管系统的整体
这些生理过程使局部血流与组织的代谢活性区域的需要紧密匹配。
个脑袋这些独特的反应是大脑健康和功能所必需的,但仍然不完全
明白此外,微血管控制的丧失与常见的年龄相关性脑血管疾病有关。
病理学,包括卒中、脑小血管疾病(cSVD)和血管性认知障碍,以及
痴呆(VCID)。本提案的总体目标是通过提供一个
更好地理解大脑不断变化的物理环境,环境,内分泌,旁分泌,
代谢和神经化学刺激在细胞水平上被脑微血管系统感知,以及如何被微血管系统感知。
这些信号被处理以确保体内平衡和适应性。我们的主要机械焦点
研究是瞬时受体电位(TRP)家族的离子通道-多种类型的多模态传感器,
物理和化学刺激存在于所有细胞中。在过去的10年里,我们的研究团队发现,
脑血管平滑肌细胞中的TRPM 4(TRP melastatin 4)和TRPML 1(TRP mucolipin 1)通道
对于肌源性张力的发展是重要的,肌源性张力是一种基本的自动调节机制,
证明了TRPA 1(TRP锚蛋白1)和TRPV 3(TRP香草酸3)通道在神经元上的关键感觉作用。
脑动脉和小动脉的内皮。继续这一主题,并利用先进的生物医学
成像方法和下一代遗传小鼠模型,我们将编织在一起的中心概念
由我们的独立项目建立,以全面概述TRP通道作为蜂窝
大脑微血管中的传感器。拟议研究的例子包括调查,
TRP通道信号网络在健康和疾病中的纳米级结构
显微镜下,阐明TRPML 1通道如何在平滑肌细胞中进行内源性调节,以防止
肌源性血管收缩过程中的血管过度收缩,并测试TRPA 1通道对
脑毛细血管内皮细胞作为活性氧物质的检测器以促进神经血管偶联。
我们将对旨在阐明基本调控机制的基础科学研究进行分层,
研究旨在了解TRP通道控制的过程如何出错,并有助于
大脑中健康的小血管在衰老过程中转变为疾病状态。为了实现这一目标,我们
开发和表征与年龄相关的cSVD和VCID的新遗传模型
研究人员在加州大学旧金山分校,并建议利用这一独特的资源,探索主题,包括参与
TRPM 4、TRPML 1和TRPA 1通道在年龄相关cSVD和VCID期间脑血管功能障碍中的作用
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Earley其他文献
Scott Earley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Earley', 18)}}的其他基金
Mechanisms of Functional Vascular Impairment In Genetic Models of Cerebral Small Vessel Disease
脑小血管疾病遗传模型中功能性血管损伤的机制
- 批准号:
10612694 - 财政年份:2022
- 资助金额:
$ 86.21万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10549399 - 财政年份:2021
- 资助金额:
$ 86.21万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10326059 - 财政年份:2021
- 资助金额:
$ 86.21万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10092017 - 财政年份:2021
- 资助金额:
$ 86.21万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10551292 - 财政年份:2021
- 资助金额:
$ 86.21万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10326050 - 财政年份:2021
- 资助金额:
$ 86.21万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10761870 - 财政年份:2021
- 资助金额:
$ 86.21万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10549397 - 财政年份:2021
- 资助金额:
$ 86.21万 - 项目类别:
TRP channels as fundamental sensors of the cerebral microcirculation
TRP 通道作为大脑微循环的基本传感器
- 批准号:
10761880 - 财政年份:2021
- 资助金额:
$ 86.21万 - 项目类别:
Nevada Center of Biomedical Research Excellence in Molecular and Cellular Signal Transduction in the Cardiovascular System
内华达心血管系统分子和细胞信号转导生物医学卓越研究中心
- 批准号:
10399805 - 财政年份:2019
- 资助金额:
$ 86.21万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 86.21万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 86.21万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 86.21万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 86.21万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 86.21万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 86.21万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 86.21万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 86.21万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 86.21万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 86.21万 - 项目类别:
Research Grant