Novel Reconstruction Paradigm for Multiphasic CT Imaging of Kidney Cancer
肾癌多相 CT 成像的新型重建范例
基本信息
- 批准号:9387307
- 负责人:
- 金额:$ 21.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAlgorithmsAnatomyAppearanceBreathingCancer PatientClinicalComputer softwareComputing MethodologiesDataData AnalysesDetectionDevelopmentDiagnosisDiseaseDisease ProgressionDoseEvaluationGoalsGoldHealthHematuriaHumanImageIndividualIntercellular FluidInvestigationJoint repairJointsKidneyLeast-Squares AnalysisLesionLinkLow Dose RadiationMedical ImagingMethodologyMethodsModelingMonitorNoiseNuclearOrganOutcomePathologyPatientsPatternPelvisPerformancePhasePositioning AttributeROC CurveRadiationRadiation exposureReceiver Operating CharacteristicsRenal carcinomaResearchResearch PersonnelResearch ProposalsRiskScanningSourceStagingTask PerformancesTimeX-Ray Computed Tomographyabdominal CTbasecancer imagingclinical applicationclinical practiceclinically relevantcomputerized data processingcontrast enhanceddesignimage reconstructionimage registrationimprovedinnovationnovelprototypequantitative imagingreconstructionresponsestandard of caresuccesstime interval
项目摘要
A multiphase CT scan acquires multiple CT images separated by short time intervals in order to capture
different contrast enhancement patterns. These different patterns provide complementary information for
diagnosis and disease staging. Multiphase CT scans are common in abdominal and pelvis exams. In
particular, indeterminate renal lesions or hematuria require four CT acquisitions to distinguish all renal lesion
subtypes. The benefit of multiphase CT is unequivocal. However, a four-phase CT scan has on average four
times the radiation dose of a single CT scan. Moreover, these exams are often performed periodically to
monitor disease progression, which raises serious concerns in terms of risks associated with radiation dose
imparted to the patient. The CT images in a multiphase scan differ from each other in terms of contrast
enhancement patterns, and also slightly in terms of organ position due to patient breathing. Nevertheless,
there is a high level of spatial and intensity correlation between these CT images. Current clinical
reconstruction methods reconstruct each phase of a multiphase CT exam independently, discarding the
correlation. The correlated image content of all CT phases is currently an untapped source of information that
will enable dramatic improvements in image quality and dose utilization. In this application, we aim to develop
a novel image reconstruction paradigm that jointly reconstructs all images in a multiphase scan. In this
paradigm, the image at each individual phase will benefit from all acquired data in a multiphase acquisition.
The improved image quality can then be used to reduce radiation dose to the patient, or to more confidently
and perhaps more frequently follow the response of lesions to therapies, both standard of care and
investigational. The proposed algorithm builds on state-of-the-art model based iterative reconstruction
methods; it utilizes self-similarity both within a single image and among the multiple correlated images in a
multiphase scan. Objective, task-based assessment of image quality (IQ) is critical to the success of this
research proposal. We will use this type of assessment during algorithm development for progress monitoring
and guidance, and also to carefully evaluate image quality gains between the proposed and competing
methods as achieved after 18 months of development. The IQ evaluation includes two components: noise
reduction which is directly linked to dose reduction, and anatomical accuracy. We will design lesion detection
and anatomical error detection tasks, and rely on task-specific metrics associated with receiver operating
characteristic methodology, using both model and human observers. The expected outcome of the proposal is
a software prototype that is applicable to real patient data with initial clinically-relevant proof of improved image
quality, which could be traded for lower radiation dose. The targeted reduction in dose is a factor close to the
number of phases. The proposal will enable a paradigm shift in data processing and analysis for multiphase
CT scans of kidney cancer patients.
多相CT扫描采集由短时间间隔分开的多个CT图像,以便捕获
不同的对比度增强模式。这些不同的模式提供了互补的信息,
诊断和疾病分期。多期CT扫描在腹部和骨盆检查中很常见。在
特别是,不确定的肾脏病变或血尿需要四次CT采集来区分所有肾脏病变
亚型。多相CT的受益是明确的。然而,四相CT扫描平均有四个
是单次CT扫描辐射剂量的两倍此外,这些检查通常定期进行,
监测疾病进展,这在与辐射剂量相关的风险方面引起了严重关切
传授给病人。多相扫描中的CT图像在对比度方面彼此不同
增强模式,并且由于患者呼吸,在器官位置方面也略有不同。然而,尽管如此,
在这些CT图像之间存在高度的空间和强度相关性。当前临床
重建方法独立地重建多相CT检查的每个相,
相关性所有CT相位的相关图像内容目前是未开发的信息源,
将能够显著改善图像质量和剂量利用率。在这个应用程序中,我们的目标是开发
一种新颖的图像重建范例,其在多相扫描中联合重建所有图像。在这
在这种范例中,每个单独相位处的图像将受益于多相位采集中的所有采集数据。
然后,改进的图像质量可以用于减少对患者的辐射剂量,或者更自信地确定对患者的辐射剂量。
并且可能更频繁地跟踪病变对治疗的反应,包括标准护理和
调查所提出的算法建立在最先进的基于模型的迭代重建
方法;它利用自相似性在一个单一的图像和多个相关的图像之间,
多相扫描客观的、基于任务的图像质量(IQ)评估是成功的关键。
研究提案。我们将在算法开发过程中使用这种类型的评估来监控进度
和指导,并仔细评估拟议和竞争之间的图像质量增益
经过18个月的发展,IQ评估包括两个组成部分:噪声
与剂量减少直接相关的减少和解剖准确性。我们将设计病变检测
和解剖错误检测任务,并依赖于与接收器操作相关的任务特定度量
特征方法,使用模型和人类观察员。该提案的预期成果是
适用于真实的患者数据的软件原型,具有改善图像的初始临床相关证据
质量,这可以换取较低的辐射剂量。有针对性地减少剂量是一个接近于
阶段数。该提案将实现多相数据处理和分析的范式转变
肾癌患者的CT扫描。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frederic Noo其他文献
Frederic Noo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frederic Noo', 18)}}的其他基金
FAIR-CT: a practical approach to enable ultra-low dose CT for longitudinal disease and treatment monitoring
FAIR-CT:一种利用超低剂量 CT 进行纵向疾病和治疗监测的实用方法
- 批准号:
10158473 - 财政年份:2020
- 资助金额:
$ 21.55万 - 项目类别:
Efficient snap-shot CT imaging of the entire heart using staggered circular scans
使用交错圆形扫描对整个心脏进行高效快照 CT 成像
- 批准号:
7740011 - 财政年份:2009
- 资助金额:
$ 21.55万 - 项目类别:
Efficient snap-shot CT imaging of the entire heart using staggered circular scans
使用交错圆形扫描对整个心脏进行高效快照 CT 成像
- 批准号:
7880625 - 财政年份:2009
- 资助金额:
$ 21.55万 - 项目类别:
Ultra-fast whole-heart CT using z-motion of the X-ray source
使用 X 射线源 z 轴运动的超快速全心脏 CT
- 批准号:
7851137 - 财政年份:2008
- 资助金额:
$ 21.55万 - 项目类别:
Ultra-fast whole-heart CT using z-motion of the X-ray source
使用 X 射线源 z 轴运动的超快速全心脏 CT
- 批准号:
8089401 - 财政年份:2008
- 资助金额:
$ 21.55万 - 项目类别:
Ultra-fast whole-heart CT using z-motion of the X-ray source
使用 X 射线源 z 轴运动的超快速全心脏 CT
- 批准号:
7528237 - 财政年份:2008
- 资助金额:
$ 21.55万 - 项目类别:
Ultra-fast whole-heart CT using z-motion of the X-ray source
使用 X 射线源 z 轴运动的超快速全心脏 CT
- 批准号:
7656593 - 财政年份:2008
- 资助金额:
$ 21.55万 - 项目类别:
RECONSTRUCTION ALGORITHM FOR MULTI-SLICE SPIRAL X-RAY CT
多排螺旋X射线CT重建算法
- 批准号:
6615735 - 财政年份:2002
- 资助金额:
$ 21.55万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Continuing Grant