Systematic Analysis of Morphogenesis, Commensalism, and Virulence in a Leading Human Fungal Pathogen
主要人类真菌病原体的形态发生、共生性和毒力的系统分析
基本信息
- 批准号:9213066
- 负责人:
- 金额:$ 59.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAneuploidyAntifungal AgentsAntifungal TherapyAscomycotaBiological AssayBiologyCandidaCandida albicansCellsCellular MorphologyCellular StructuresClinicalCollaborationsCollectionCommunitiesComplexCuesCytolysisData SetDevelopmentDiploidyDrug TargetingDrug resistanceEnvironmentEssential GenesFilamentFoundationsGastrointestinal tract structureGene DeletionGene ExpressionGene TargetingGenesGeneticGenetic TranscriptionGenomeGenomic LibraryGenomic approachGenomicsGoalsGrowthHIVHealthHumanImage AnalysisImmuneImmune systemImmunocompromised HostIn VitroIncidenceIndividualInfectionInvestmentsLaboratoriesLibrariesLifeLinkMachine LearningMalignant NeoplasmsMethodsMolecularMorphogenesisMusMutationMycosesNosocomial InfectionsOrgan TransplantationOrganismOutcomePathogenesisPathogenicityPharmaceutical PreparationsPhenotypeProcessPropertyPublishingResistance developmentResolutionResourcesSepsisSolidSymbiosisSystemic infectionTestingTetracyclinesTherapeuticToxic effectVirulenceWorkYeast Model SystemYeastsattributable mortalitycancer therapycombatfitnessfunctional genomicsfungusgene replacementgenome-widegenomic platformhigh resolution imaginghuman diseaseimmune functionimprovedinsightkillingsmembermicrobiotamortalitymutantnew therapeutic targetnext generation sequencingnovelnovel therapeutic interventionnovel therapeuticspathogenpatient populationprogramspromoterquantitative imagingresponsetraitunpublished works
项目摘要
The impact of fungal pathogens on human health is devastating. They infect billions of people
worldwide, and kill more than 1.5 million each year. The most vulnerable are people with reduced immune
function, such as those with HIV or those undergoing immune suppressing treatments for cancer or organ
transplants. One of the most pervasive fungal pathogens is Candida albicans, which kills almost 40% of people
suffering from bloodstream infections. Treating these infections is extremely difficult, as fungi are closely
related to humans and there are very few drugs that kill the fungus without host toxicity. With the emergence of
drug resistance, the development of new therapeutic strategies is now crucial. To address this important
clinical need and identify new antifungal drug targets, it is critical to uncover mechanisms that enable
C. albicans to cause life-threatening human disease.
We are one of the first academic labs to obtain a powerful resource that will allow us to test the function
of almost every gene in the C. albicans genome. This resource includes a collection of double barcoded
heterozygous mutants covering ~90% of the genome, and a collection of strains covering ~40% of the genome
where the expression of the remaining wild-type allele of a gene is governed by the tetracycline-repressible
promoter. This resource provides an unprecedented opportunity to identify genes that control key virulence
traits such as morphogenesis. It also enables the identification of determinants of commensalism and
virulence, and to further elucidate the molecular mechanisms involved. We have optimized a functional
genomics platform for massively parallel analysis of fungal virulence traits using next generation sequencing to
quantify the relative proportion of each barcoded strain in pooled assays. We have also optimized high-
resolution image analysis of cellular morphology and structures, and assays for identifying genes important for
commensalism, virulence, and interaction with host immune cells. Our studies will provide the first global
analysis of C. albicans morphogenesis, commensalism, and virulence.
Our studies will: 1) develop a computational platform to predict C. albicans essential genes, and
expand the collection of tetracycline-repressible conditional expression strains to cover most non-essential
genes, since genes required for pathogen viability in vitro provide little insight into mechanisms of host
adaptation or virulence; 2) identify novel regulators of key virulence traits such as morphogenesis; and 3)
identify determinants of C. albicans host adaptation and virulence on a genome scale. This work will provide
an expanded functional genomics resource to advance the field, and will leverage this resource to
elucidate the genes and genetic networks governing morphogenesis and virulence. This will reveal
new strategies to cripple fungal pathogens, and drug targets to improve clinical outcome.
真菌病原体对人类健康的影响是毁灭性的。他们感染了数十亿人
在全世界范围内,每年造成超过 150 万人死亡。最脆弱的是免疫力低下的人
功能,例如艾滋病毒感染者或接受癌症或器官免疫抑制治疗的患者
移植。最普遍的真菌病原体之一是白色念珠菌,它导致近 40% 的人死亡
患有血液感染。治疗这些感染极其困难,因为真菌与
与人类有关,并且很少有药物可以杀死真菌而不对宿主产生毒性。随着出现
耐药性,开发新的治疗策略现在至关重要。为了解决这个重要的
为了满足临床需求并确定新的抗真菌药物靶标,揭示能够实现的机制至关重要
白色念珠菌会导致危及生命的人类疾病。
我们是最早获得强大资源的学术实验室之一,这将使我们能够测试该功能
白色念珠菌基因组中的几乎每个基因。该资源包括双条形码的集合
覆盖约 90% 基因组的杂合突变体,以及覆盖约 40% 基因组的菌株集合
其中基因的剩余野生型等位基因的表达受四环素抑制
发起人。该资源为识别控制关键毒力的基因提供了前所未有的机会
形态发生等特征。它还能够识别共生主义的决定因素和
毒力,并进一步阐明所涉及的分子机制。我们优化了一个功能
基因组学平台,使用下一代测序对真菌毒力性状进行大规模并行分析
量化混合分析中每种条形码菌株的相对比例。我们还优化了高
细胞形态和结构的分辨率图像分析,以及识别重要基因的测定
共生现象、毒力以及与宿主免疫细胞的相互作用。我们的研究将提供第一个全球
分析白色念珠菌的形态发生、共生现象和毒力。
我们的研究将:1)开发一个计算平台来预测白色念珠菌必需基因,以及
扩大四环素抑制条件表达菌株的收集以涵盖大多数非必需菌株
基因,因为病原体在体外生存所需的基因几乎无法深入了解宿主的机制
适应或毒力; 2)确定形态发生等关键毒力特征的新型调节因子;和 3)
在基因组规模上确定白色念珠菌宿主适应和毒力的决定因素。这项工作将提供
扩展的功能基因组学资源来推动该领域的发展,并将利用该资源
阐明控制形态发生和毒力的基因和遗传网络。这将揭示
削弱真菌病原体的新策略和改善临床结果的药物靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LEAH Elizabeth Cowen其他文献
LEAH Elizabeth Cowen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LEAH Elizabeth Cowen', 18)}}的其他基金
Targeting the casein kinase 1 (CK1)-like kinase Yck2 in fungal pathogenesis
在真菌发病机制中靶向酪蛋白激酶 1 (CK1) 样激酶 Yck2
- 批准号:
10437100 - 财政年份:2022
- 资助金额:
$ 59.17万 - 项目类别:
Targeting the casein kinase 1 (CK1)-like kinase Yck2 in fungal pathogenesis
在真菌发病机制中靶向酪蛋白激酶 1 (CK1) 样激酶 Yck2
- 批准号:
10595027 - 财政年份:2022
- 资助金额:
$ 59.17万 - 项目类别:
Systematic Analysis of Morphogenesis, Commensalism, and Virulence in a Leading Human Fungal Pathogen
主要人类真菌病原体的形态发生、共生性和毒力的系统分析
- 批准号:
10709905 - 财政年份:2017
- 资助金额:
$ 59.17万 - 项目类别:
Systematic Analysis of Morphogenesis, Commensalism, and Virulence in a Leading Human Fungal Pathogen
主要人类真菌病原体的形态发生、共生性和毒力的系统分析
- 批准号:
9751202 - 财政年份:2017
- 资助金额:
$ 59.17万 - 项目类别:
Systematic Analysis of Morphogenesis, Commensalism, and Virulence in a Leading Human Fungal Pathogen
主要人类真菌病原体的形态发生、共生性和毒力的系统分析
- 批准号:
10574728 - 财政年份:2017
- 资助金额:
$ 59.17万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 59.17万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 59.17万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 59.17万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 59.17万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 59.17万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 59.17万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 59.17万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 59.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 59.17万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 59.17万 - 项目类别:














{{item.name}}会员




