Toward new classification criteria for mild and moderate TBI by a data-inclusive cross-study analysis using FITBIR
通过使用 FITBIR 进行包含数据的交叉研究分析,制定轻度和中度 TBI 的新分类标准
基本信息
- 批准号:9320986
- 负责人:
- 金额:$ 18.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-22 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteBig DataCategoriesCause of DeathCessation of lifeCharacteristicsClassificationClinicalClinical TrialsCognitiveCollectionCommon Data ElementDataData CollectionData ElementData SetDescriptorDevelopmentDiagnosticEmergency department visitEnsureEquationEvaluationExclusion CriteriaFutureHeterogeneityHospitalizationImageImpairmentIndividualInjuryInvestigationLeadMeasurementMedicalMedical HistoryMental disordersMeta-AnalysisMethodsModelingNeurologic SymptomsOutcomeOutcome MeasurePatient-Focused OutcomesPatientsPopulationRehabilitation therapyReproducibility of ResultsResearchResearch PersonnelSample SizeSeveritiesSigns and SymptomsSubgroupSupervisionSymptomsSystemTBI PatientsTimeTrainingTraumatic Brain InjuryTreatment EffectivenessUnited StatesWorkaggressive therapybasedemographicsdisabilityeffective therapyexperienceflexibilityfunctional outcomeshigh dimensionalityimprovedinclusion criteriaindividual patientinsightmild traumatic brain injurynervous system disorderoutcome predictionpersonalized medicinepreventprognosticpsychologicsecondary analysissocialtreatment effecttreatment strategy
项目摘要
Project Summary/Abstract
Traumatic brain injury (TBI) is amongst the leading causes of death and disability in the United States and
Worldwide. Each year in the United States, there are an estimated 1.7 million TBIs, resulting in 52,000 deaths,
275,000 hospitalizations, and 1,365,000 Emergency Department visits. These TBIs result in substantial
negative impact to many individuals with TBI. Currently, there are not treatments that can be delivered in the
acute post-injury time period that have been shown to result in improved patient outcomes. There is an
undeniable need for effective treatments for patients with TBI who are likely to develop prolonged post-TBI
deficits. A major shortcoming in the TBI field is the inability to accurately classify a patient with TBI according to
that patients expected outcomes. Current classification systems use broad criteria to assign patients to “mild”,
“moderate” or “severe” TBI categories. However, these criteria often allow for patients who are very different
from one another, who have had very different injuries, and who have very different post-injury signs and
symptoms, to be classified into the same TBI group. Current classification results in patients who are classified
the same, e.g. as “mild” TBI, to have substantially variable outcomes. Our research, a secondary analysis of
large datasets contained within FITBIR, aims to develop a more precise classification system for patients who
have experienced a TBI that correlates with expected patient outcomes. To make the classification system
practical for use by clinicians and researchers, data that are typically available at the time of the initial patient
evaluation will be utilized. Factors that might be predictive of patient outcomes and will thus be considered for
inclusion in the refined classification system relate to neurologic symptoms immediately following TBI, findings
at the initial medical evaluation, presence and characteristics of prior TBIs, history of medical, neurologic, and
psychiatric disorders, mechanism of TBI, and patient socio-demographics. The more precise TBI classification
system that will result from this research will inform clinicians on how aggressively to prescribe rehabilitative
therapies, will allow for more accurate prognostication of patient outcomes, and will help to determine inclusion
and exclusion criteria for future clinical trials of TBI therapies.
项目总结/摘要
创伤性脑损伤(TBI)是美国死亡和残疾的主要原因之一,
国际吧在美国,每年估计有170万例TBI,导致52,000人死亡,
275,000次住院治疗和1,365,000次急诊就诊。这些TBI导致大量
对许多TBI患者产生负面影响。目前,还没有治疗方法可以在
急性损伤后的时间段,已被证明可以改善患者的预后。有一个
无可否认,需要有效的治疗TBI患者谁可能发展长期的TBI后,
赤字TBI领域中的主要缺点是不能根据TBI患者的特征对TBI患者进行准确分类。
患者期望的结果。目前的分类系统使用广泛的标准将患者归类为“轻度”,
“中度”或“重度”TBI类别。然而,这些标准通常允许非常不同的患者
一个人,有一个人,有一个人,
症状,被归类为相同的TBI组。目前的分类结果是,
相同,例如“轻度”TBI,具有实质上可变的结果。我们的研究是对
FITBIR中包含的大型数据集,旨在为以下患者开发更精确的分类系统:
经历了与预期患者结局相关的TBI。为了使分类系统
临床医生和研究人员使用的实用数据,通常在最初的患者
将进行评估。可能预测患者结局的因素,因此将考虑
包括在细化分类系统有关的神经系统症状后立即TBI,结果
在初始医学评价时,既往TBI的存在和特征,病史,神经病学,和
精神障碍、TBI的机制和患者的社会人口统计学。更精确的TBI分类
这项研究将产生一个系统,该系统将告知临床医生如何积极地开康复处方
治疗,将允许更准确地说明患者的结果,并将有助于确定纳入
以及未来TBI治疗临床试验的排除标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sub-classifying patients with mild traumatic brain injury: A clustering approach based on baseline clinical characteristics and 90-day and 180-day outcomes.
对轻度创伤性脑损伤患者进行细分:基于基线临床特征以及 90 天和 180 天结果的聚类方法。
- DOI:10.1371/journal.pone.0198741
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Si,Bing;Dumkrieger,Gina;Wu,Teresa;Zafonte,Ross;Valadka,AlexB;Okonkwo,DavidO;Manley,GeoffreyT;Wang,Lujia;Dodick,DavidW;Schwedt,ToddJ;Li,Jing
- 通讯作者:Li,Jing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Li其他文献
Design and analysis of a novel low-temperature solar thermal electric system with two-stage collectors and heat storage units
新型两级集热器和蓄热装置低温太阳能热电系统的设计与分析
- DOI:
10.1016/j.renene.2011.02.008 - 发表时间:
2011-09 - 期刊:
- 影响因子:8.7
- 作者:
Gang Pei;Jing Li;Jie Ji - 通讯作者:
Jie Ji
Jing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Li', 18)}}的其他基金
AIDen: An AI-empowered detection and diagnosis system for jaw lesions using CBCT
AIDen:使用 CBCT 的人工智能驱动下颌病变检测和诊断系统
- 批准号:
10383494 - 财政年份:2022
- 资助金额:
$ 18.86万 - 项目类别:
Physiologically Based Pharmacokinetic Modeling of Drug Penetration into the Human Brain and Brain Tumors
基于生理学的药物渗透到人脑和脑肿瘤的药代动力学模型
- 批准号:
10674753 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
Physiologically Based Pharmacokinetic Modeling of Drug Penetration into the Human Brain and Brain Tumors
基于生理学的药物渗透到人脑和脑肿瘤的药代动力学模型
- 批准号:
10459595 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
Physiologically Based Pharmacokinetic Modeling of Drug Penetration into the Human Brain and Brain Tumors
基于生理学的药物渗透到人脑和脑肿瘤的药代动力学模型
- 批准号:
10298016 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
- 批准号:
10172824 - 财政年份:2020
- 资助金额:
$ 18.86万 - 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
- 批准号:
10677882 - 财政年份:2020
- 资助金额:
$ 18.86万 - 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
- 批准号:
10408777 - 财政年份:2020
- 资助金额:
$ 18.86万 - 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
- 批准号:
10690298 - 财政年份:2020
- 资助金额:
$ 18.86万 - 项目类别:
Impact of the Physician Payments Sunshine Act on Prescription Drug Utilization and Spending
医生支付阳光法案对处方药使用和支出的影响
- 批准号:
9807060 - 财政年份:2019
- 资助金额:
$ 18.86万 - 项目类别:
Project MISSION: Developing a multicomponent, Multilevel Implementation Strategy for Syncope OptImalCare thrOugh eNgagement
项目使命:通过参与制定晕厥优化护理的多组成部分、多层次实施策略
- 批准号:
9755244 - 财政年份:2018
- 资助金额:
$ 18.86万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 18.86万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 18.86万 - 项目类别:
Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 18.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 18.86万 - 项目类别:
Discovery Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 18.86万 - 项目类别:
Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 18.86万 - 项目类别:
Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
$ 18.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 18.86万 - 项目类别:
Discovery Projects
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2313738 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Standard Grant
IUCRC Planning Grant New Mexico State University: Center for Aviation Big Data Analytics [ABDA]
IUCRC 规划拨款 新墨西哥州立大学:航空大数据分析中心 [ABDA]
- 批准号:
2231654 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Standard Grant