Quantifying the role of the connectome in resiliency to multiple sclerosis
量化连接组在多发性硬化症恢复力中的作用
基本信息
- 批准号:9435991
- 负责人:
- 金额:$ 25.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AnatomyBiological MarkersBrainBrain InjuriesBrain regionClassificationCognitiveDataDevelopmentDiffusionDiseaseDisease ProgressionFutureGoalsImpairmentIndividualInjuryInnovative TherapyKnowledgeLeadLinkMachine LearningMagnetic Resonance ImagingMathematicsMeasuresMethodsMissionModelingMultiple SclerosisNational Institute of Neurological Disorders and StrokeNeurologicOutcomePathway AnalysisPathway interactionsPatientsPatternPhysically HandicappedProcessPublic HealthPublishingQuality of lifeRecoveryRehabilitation therapyResearchRoleSignal TransductionStructureStructure-Activity RelationshipTechniquesTestingTherapeutic InterventionTimeTraumatic Brain InjuryWorkbaseburden of illnessclinically relevantcognitive disabilityconnectomedisabilitydriving forceimaging biomarkerimprovedinsightmathematical methodsmathematical modelmultiple sclerosis patientmultiple sclerosis treatmentnervous system disorderneuroimagingnovelnovel therapeuticsoutcome forecastpersonalized medicineprognosticrepairedresilienceresponsetooltranslational impactwhite matterwhite matter damage
项目摘要
MS damages white matter pathways that connect brain regions, i.e. the structural connectome (SC), disrupting
flow of electrical signals, i.e. the functional connectome (FC), causing cognitive and physical disability. Howev-
er, the burden of disease in the brain is not always proportional to an individual's disability. How the brain com-
pensates for damage in resilient patients remains a mystery, making it difficult to develop accurate prognoses
and treatments that can leverage this process in less fortunate patients. Without this knowledge it will not be
possible to create individualized therapies based on the brain's natural resiliency mechanism or to establish
reliable ways to predict potential for recovery. The thriving field of brain connectivity network analysis, or con-
nectomics, provides a promising tool with which to capture, model and understand mechanisms of resiliency.
The long-term goal is to develop novel, personalized rehabilitation methods that mimic and enhance the brain's
resiliency process to restore cognitive and physical abilities after damage due to neurological conditions. The
overall objective of this work is to identify connectome-based imaging biomarkers of resiliency in MS, i.e. those
that separate patients with high disease burden and low disability (high-adapters) from those with similar dis-
ease burden and high disability (low-adapters). Our central hypothesis, the functional rerouting hypothesis,
states that resilient patients' brains recover from injury by restoring normal functional connections using alter-
nate white matter pathways to circumvent irrevocably damaged structural connections. This hypothesis is
based on published and preliminary work in simulated studies, severe brain injury and mild to moderate trau-
matic brain injury. The rationale for the proposed research is that insight into the brain's ability to compensate
for injury would allow for more accurate prognostication and enable the development of novel therapeutic
strategies for MS. Guided by strong preliminary data, this hypothesis will be tested by pursuing two specific
aims: to identify global and regional metrics of the 1) structural and functional connectomes and 2) structure-
function relationship between the connectomes that differentiate high-adapting and low-adapting MS patients.
We will collect functional, diffusion and anatomical MRIs from 25 controls and 42 high- and 42 low-adapting
MS patients to extract structural and functional connectomes and test central hypotheses. The approach is in-
novative, in the applicant's opinion, as it implements cutting-edge machine learning techniques and a novel
mathematical model to formalize the relationship between structural and functional connectomes and capture
network-level functional rerouting in resiliency to MS-related damage. The proposed research is significant in
that it is expected to have broad translational impact on the development of more accurate prognoses as well
as targeted, personalized treatments for patients with MS and other neurological disorders. Ultimately, such
knowledge has the potential to open up new horizons for innovative therapies, e.g. through non-invasive brain
stimulation, that can dramatically improve the quality of life for patients with debilitating neurological disease.
MS损害连接大脑区域的白色物质通路,即结构连接体(SC),
电信号的流动,即功能性连接体(FC),导致认知和身体残疾。然而,
呃,大脑的疾病负担并不总是与个人的残疾成正比。大脑是如何-
恢复力强的患者的损伤补偿仍然是一个谜,因此很难开发出准确的诊断方法。
以及可以在不幸的患者中利用这一过程的治疗方法。如果没有这些知识,
可以根据大脑的自然弹性机制创建个性化治疗,或者建立
预测恢复潜力的可靠方法。大脑连接网络分析(brain connectivity network analysis,简称con)是一个蓬勃发展的领域,
nectomics,提供了一个很有前途的工具,捕捉,建模和理解的弹性机制。
长期目标是开发新颖的,个性化的康复方法,模仿和增强大脑的
复原力过程,以恢复认知和身体能力后,由于神经条件的损害。的
这项工作的总体目标是确定MS中弹性的基于连接体的成像生物标志物,即那些
将高疾病负担和低残疾(高适应者)的患者与具有类似疾病的患者区分开来,
减轻负担和高残疾(低适应者)。我们的核心假设,功能性改道假说,
指出,有弹性的患者的大脑从损伤中恢复,恢复正常的功能连接使用改变,
天然的白色物质通道,以绕过可修复的受损结构连接。这种假设是
根据已发表的和模拟研究的初步工作,严重脑损伤和轻度至中度创伤,
自动脑损伤这项研究的基本原理是,深入了解大脑的补偿能力
将允许更准确的测量,并使新的治疗方法的发展成为可能。
在强有力的初步数据的指导下,这一假设将通过追求两个具体的
目的:确定1)结构和功能连接体和2)结构-
区分高适应和低适应MS患者的连接体之间的功能关系。
我们将从25名对照组和42名高适应和42名低适应患者中收集功能、弥散和解剖MRI。
MS患者提取结构和功能连接体和测试中心假设。方法是-
在申请人看来,这是创新的,因为它实现了尖端的机器学习技术和新颖的
数学模型来形式化结构和功能连接体之间的关系,
网络级功能重新路由,对MS相关损坏具有弹性。该研究具有重要意义,
预计它也将对更准确的翻译产生广泛的影响,
作为MS和其他神经系统疾病患者的靶向个性化治疗。最终,这样的
知识有可能为创新疗法开辟新的视野,例如通过非侵入性脑
刺激,可以显着提高患者的生活质量与衰弱的神经系统疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Kuceyeski其他文献
Amy Kuceyeski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Kuceyeski', 18)}}的其他基金
Heritability and cognitive implications of structural-functional connectome coupling
结构-功能连接组耦合的遗传性和认知意义
- 批准号:
10189014 - 财政年份:2021
- 资助金额:
$ 25.43万 - 项目类别:
Multi-Modal Imaging of the Mechanisms Underlying Impaired Executive Attention After Traumatic Brain Injury
脑外伤后执行注意力受损机制的多模态成像
- 批准号:
10316202 - 财政年份:2017
- 资助金额:
$ 25.43万 - 项目类别:
Multi-modal imaging of the mechanisms underlying impaired executive attention after traumatic brain injury
创伤性脑损伤后执行注意力受损机制的多模态成像
- 批准号:
10062524 - 财政年份:2017
- 资助金额:
$ 25.43万 - 项目类别:
Construction of a connectivity importance map of white and gray matter in the hum
构建嗡嗡声中白质和灰质的连通性重要性图
- 批准号:
8002038 - 财政年份:2010
- 资助金额:
$ 25.43万 - 项目类别:
Construction of a connectivity importance map of white and gray matter in the hum
构建嗡嗡声中白质和灰质的连通性重要性图
- 批准号:
8130632 - 财政年份:2010
- 资助金额:
$ 25.43万 - 项目类别:
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
$ 25.43万 - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
$ 25.43万 - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
$ 25.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
$ 25.43万 - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
$ 25.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
$ 25.43万 - 项目类别:
Studentship