Enabling electron-induced fragmentation in tandem mass spectrometry
在串联质谱分析中实现电子诱导碎裂
基本信息
- 批准号:9346138
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAddressAdoptedAdoptionAffectAmidesBiologicalCarbohydratesCardiovascular DiseasesCellsChargeCleaved cellComplexComputer SimulationDetectionDeuteriumDiagnosticDiseaseDissociationElectronsElectrostaticsFilamentFourier transform ion cyclotron resonanceGoalsHigh Pressure Liquid ChromatographyHydrogenIndustryInflammationIonsIsotope LabelingIsotopesLipidsMalignant NeoplasmsManufacturer NameMass Spectrum AnalysisMeasuresMedicalMethodologyMethodsModernizationModificationMolecularMovementNerve DegenerationOpticsPatternPeptide FragmentsPeptidesPharmaceutical PreparationsPhasePhosphopeptidesPhosphorylationPhysiologic pulsePolysaccharidesPost-Translational Protein ProcessingPower SourcesProcessPromegaProteinsProteomicsRadiationReaction TimeResearchResearch PersonnelResolutionSamplingSmall Business Innovation Research GrantSpeedTRAP PeptideTechnologyTherapeutic InterventionTimeTissuesTrypsinUnited States National Institutes of HealthWorkbasechemical bonddensitydesigndisease diagnosiselectron energyexperimental studyimprovedinstrumention mobilitylensmagnetic fieldmass spectrometermillisecondnext generationprogramsresearch and developmentsuccesstandem mass spectrometrytherapeutic biomarkertooltransmission process
项目摘要
Summary: The speed, resolution and high mass accuracy of modern mass spectrometers have
revolutionized proteomics, but the accurate identification and quantitation of post-translational
modifications (PTMs) remain a major challenge—a key limitation for many important medical applications.
A key weakness with current mass spectrometry for proteomics lies in the methods used to induce
fragmentation, because PTMs such as phosphorylation are among the most labile chemical bonds in proteins
and are lost in complex ways by current collision-based fragmentation approaches. An alternative
fragmentation methodology called electron capture dissociation (ECD) is well established to produce
exceptionally clean spectra that preserve PTMs, but is currently feasible only in expensive FTICR mass
spectrometers. The fundamental limitation to ECD is the difficulty of providing enough low-energy electrons
to efficiently fragment peptides. We have discovered how to use carefully sculpted magnetic fields with a hot
electron-producing filament to restrain large numbers of electrons in the flight path of ions. This can be
adapted in any common tandem mass spectrometer without changing the existing ion optics, but our best
designs can only fragment 3-5% of doubly charged trypsin-digested peptides—the most common workflow
used in mass spectrometry. This low fragmentation efficiency limits sensitivity, which has proved to be the
major barrier to adopting this powerful methodology by the mass spectrometry industry. The key focus of
this Phase I SBIR project is determining how to increase the interaction time of ions with electrons confined
to a narrow beam by the magnetic fields to prove this concept feasible. The reaction time currently is 1-2
microseconds. Our Phase I feasibility question is whether fragmentation can be effectively increased at least
two-fold by transiently stopping peptide ions in the ECD cell without significant loss due to electrostatic
scattering. In addition, the design must retain the sub-millisecond speed necessary to be compatible for
current front-end HPLC and ion mobility separations used with mass spectrometers for complex samples.
Rigorous computer simulations show these objectives can be accomplished by carefully cooling precursor
ions and then transiently stopping their flight with carefully timed electrical pulses to electrostatic lenses.
Proof of feasibility and validated concept demonstration (Phase II) are essential in engaging the major
instrument manufacturers to further develop and commercialize our ECD technology for use in their mass
spectrometer products. Success will also show how our technology can produce better fragmentation of the
most challenging analytes analyzed by mass spectrometry, including lipids, glycans, and other difficult-to-
fragment drugs/metabolites. The adoption of our technology will accelerate the ability of many NIH
investigators to probe disease mechanisms and identify diagnostic/therapeutic biomarkers with increased
accuracy and greater speed, while making fewer mistaken identifications in complex biological samples.
摘要:现代质谱仪的速度、分辨率和高质量精度已经
彻底改变了蛋白质组学,但翻译后蛋白质的准确识别和定量
修饰(PTM)仍然是一个重大挑战——这是许多重要医疗应用的关键限制。
当前蛋白质组学质谱分析的一个关键弱点在于用于诱导的方法
片段化,因为磷酸化等 PTM 是蛋白质中最不稳定的化学键之一
当前基于碰撞的碎片方法会以复杂的方式丢失。另一种选择
称为电子捕获解离 (ECD) 的碎裂方法已被广泛采用,可产生
保留 PTM 的异常干净的光谱,但目前仅在昂贵的 FTICR 质量中可行
光谱仪。 ECD 的根本限制是难以提供足够的低能电子
有效地片段化肽。我们已经发现了如何使用精心雕刻的磁场和热
产生电子的灯丝,用于限制离子飞行路径中的大量电子。这可以是
适用于任何常见的串联质谱仪,无需改变现有的离子光学器件,但我们最好的
设计只能片段化 3-5% 的双电荷胰蛋白酶消化肽——最常见的工作流程
用于质谱分析。这种低碎片效率限制了灵敏度,这已被证明是
质谱行业采用这种强大方法的主要障碍。重点关注的是
第一阶段 SBIR 项目正在确定如何增加离子与受限电子的相互作用时间
通过磁场到窄光束来证明这个概念的可行性。目前反应时间为1-2
微秒。我们一期的可行性问题是至少能有效增加碎片化吗
通过短暂停止 ECD 细胞中的肽离子,可以实现两倍的效果,而不会因静电而造成显着损失
散射。此外,设计必须保留兼容所需的亚毫秒速度
当前前端 HPLC 和离子淌度分离与质谱仪一起用于复杂样品。
严格的计算机模拟表明这些目标可以通过仔细冷却前体来实现
离子,然后通过仔细定时的电脉冲到静电透镜短暂地停止它们的飞行。
可行性证明和经过验证的概念演示(第二阶段)对于吸引专业人士至关重要
仪器制造商进一步开发我们的 ECD 技术并将其商业化,以供大规模使用
光谱仪产品。成功还将展示我们的技术如何能够更好地碎片化
通过质谱分析最具挑战性的分析物,包括脂质、聚糖和其他难以分析的分析物
碎片药物/代谢物。采用我们的技术将加速许多 NIH 的能力
研究人员探索疾病机制并确定诊断/治疗生物标志物
准确性和更快的速度,同时减少复杂生物样品中的错误识别。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced Top-Down Protein Characterization with Electron Capture Dissociation and Cyclic Ion Mobility Spectrometry.
- DOI:10.1021/acs.analchem.1c04870
- 发表时间:2022-03-08
- 期刊:
- 影响因子:7.4
- 作者:Shaw JB;Cooper-Shepherd DA;Hewitt D;Wildgoose JL;Beckman JS;Langridge JI;Voinov VG
- 通讯作者:Voinov VG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valery G. Voinov其他文献
Valery G. Voinov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valery G. Voinov', 18)}}的其他基金
Real time optimization of electron-based fragmentation for middle and top-down proteomics in mass spectrometry
质谱中中自上而下蛋白质组学基于电子的碎片实时优化
- 批准号:
10081127 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Dual Electron-Based Fragmentation with Ion Mobility to Advance Native Top-Down Proteomics
基于双电子的断裂和离子淌度以推进天然自上而下的蛋白质组学
- 批准号:
10009626 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Practical Mass Spectrometry Upgrade for Identifying Fragile Protein Modifications by ECD
通过 ECD 识别脆性蛋白质修饰的实用质谱升级
- 批准号:
9253957 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Practical Mass Spectrometer Upgrade for Identifying Fragile Protein Modifications by ECD
用于通过 ECD 识别脆性蛋白质修饰的实用质谱仪升级
- 批准号:
9542850 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Enabling electron-induced fragmentation in tandem mass spectrometry
在串联质谱分析中实现电子诱导碎裂
- 批准号:
9751318 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant