Transcriptome regulation during mitosis
有丝分裂期间的转录组调控
基本信息
- 批准号:9285488
- 负责人:
- 金额:$ 34.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAneuploidyBindingBinding ProteinsBiochemicalCancer EtiologyCell NucleusCell SurvivalCell divisionCellsCentromereChromatinChromatin StructureChromosome CondensationChromosome SegregationChromosomesComplexCongenital AbnormalityDNADNA Binding DomainDNA Polymerase IIDevelopmentDissectionDown SyndromeExcisionFailureFetal Mortality StatisticsGene ExpressionGenetic TranscriptionGenomeGoalsHeterogeneous-Nuclear Ribonucleoprotein UIn VitroInterphaseKinetochoresLeadMeiosisMessenger RNAMicrotubule-Associated ProteinsMicrotubulesMitosisMitoticMitotic ChromosomeMitotic spindleModelingMolecularMolecular StructureNuclearPhenotypePhosphorylationPlayProteinsRNARNA BindingRNA Polymerase IIRNA Recognition MotifRecruitment ActivityRegulationResolutionRoleSeriesSister ChromatidSystemTestingTimeTranscription ElongationTranslationsUntranslated RNAWorkXenopusaurora B kinaseborealinchromosome movementcohesiondaughter celldesigneggexperimental studyin vitro Assayinsightmutantnoveltranscriptometumor progression
项目摘要
Abstract
Accurate segregation of chromosomes to daughter cells during cell division is critical for cell viability
and normal development. Errors in chromosome segregation are correlated with cancer progression and cause
some types of severe birth defects (e.g. Down Syndrome). Chromosome segregation is controlled by the
mitotic/meiotic spindle, which is a large macromolecular structure composed primarily of microtubules and
associated proteins. Chromosome movements are powered by attachment of microtubules to the kinetochore
and errors in kinetochore-microtubule attachment lead to aneuploidy. Decades of work have identified many
proteins that are important for the assembly and function of the mitotic spindle, yet much remains unknown
about regulation of spindle assembly. Recent work from our lab and others has shown that in addition to
proteins hundreds of different mRNAs and components of the translation apparatus as well as long noncoding
RNAs are also localized to the mitotic spindle and chromosomes and play a role in kinetochore and spindle
assembly. Our group and others have also recently demonstrated that centromeres are transcribed into a long,
noncoding RNA important for kinetochore assembly and function. We showed that lncRNAs bind to and
activate the mitotic kinase Aurora-B. In this proposal we describe a series of experiments designed to elucidate
the roles and mechanisms of RNAs localized to the spindle and chromosomes during mitosis. We propose a
series of experiments to examine how kinetochore proteins promote transcription of centromeric repeats during
mitosis and how this is related to changes in kinetochore-microtubule attachment. We then propose a series of
detailed biochemical experiments to understand how various centromere proteins interact with RNA and how
this interaction influences their centromere functions. In addition to being regulated by RNA binding recent
work demonstrates that Aurora-B controls the binding of noncoding RNAs to the chromosomes during mitosis.
In the final Aim we propose to study the mechanism by which Aurora-B promotes the release of lncRNAs from
mitotic chromosomes. We focus on the interaction between Aurora-B and hnrnp U and the consequences of a
failure to remove lncRNAs from chromosomes during mitosis. Taken together, these Aims will provide insight
into the interaction of Aurora-B with spindle, chromatin, and kinetochore-localized RNAs and how these
interactions lead to successful chromosome segregation. These studies are likely to provide fundamental
insight into the mechanisms of spindle assembly and cell division and could provide additional insight into
mechanisms of cancer progression and the cause of birth defects.
摘要
在细胞分裂过程中,染色体与子细胞的准确分离对于细胞活力至关重要
正常的发展。染色体分离错误与癌症进展和病因相关
某些类型的严重出生缺陷(如唐氏综合症)。染色体分离是由
有丝分裂/减数分裂纺锤体,其是主要由微管组成的大分子结构,
相关蛋白质染色体的运动是由微管附着在动粒上提供动力的
并且着丝粒-微管附着中的错误导致非整倍性。几十年的工作已经确定了许多
这些蛋白质对有丝分裂纺锤体的组装和功能很重要,但仍有许多未知之处
关于主轴装配的调节。我们实验室和其他人最近的工作表明,除了
蛋白质中有数百种不同的mRNA和翻译装置的组成部分,
RNA也定位于有丝分裂纺锤体和染色体,并在动粒和纺锤体中发挥作用。
组装件.我们的团队和其他人最近也证明了着丝粒被转录成一个长的,
非编码RNA对动粒组装和功能很重要。我们发现lncRNA与
激活有丝分裂激酶Aurora-B。在这个提议中,我们描述了一系列旨在阐明
定位于纺锤体和染色体的RNA在有丝分裂中的作用和机制。我们提出了一个
一系列的实验来研究动粒蛋白如何促进着丝粒重复序列的转录,
有丝分裂以及这与运动舞蹈微管附着的变化有关。然后,我们提出一系列
详细的生物化学实验,以了解各种着丝粒蛋白质如何与RNA相互作用,以及如何
这种相互作用影响它们的着丝粒功能。除了受到RNA结合的调节外,最近
研究表明Aurora-B在有丝分裂过程中控制非编码RNA与染色体的结合。
在最后的目的中,我们建议研究Aurora-B促进lncRNA从细胞中释放的机制。
有丝分裂染色体我们关注的是Aurora-B和hnrnp U之间的相互作用,以及
在有丝分裂过程中不能从染色体上去除lncRNA。这些目标合在一起,
Aurora-B与纺锤体、染色质和着丝粒定位的RNA的相互作用,以及这些
相互作用导致成功的染色体分离。这些研究可能会提供基本的
深入了解纺锤体组装和细胞分裂的机制,并可以提供更多的了解
癌症进展的机制和出生缺陷的原因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Demian Blower其他文献
Michael Demian Blower的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Demian Blower', 18)}}的其他基金
Analysis of chromatin-RNA interactions during the cell cycle.
细胞周期中染色质-RNA 相互作用的分析。
- 批准号:
10338329 - 财政年份:2022
- 资助金额:
$ 34.2万 - 项目类别:
Analysis of chromatin-RNA interactions during the cell cycle.
细胞周期中染色质-RNA 相互作用的分析。
- 批准号:
10593100 - 财政年份:2022
- 资助金额:
$ 34.2万 - 项目类别:
Genome-wide analysis of polyadenylation and translation in Xenopus
非洲爪蟾多聚腺苷酸化和翻译的全基因组分析
- 批准号:
8892211 - 财政年份:2014
- 资助金额:
$ 34.2万 - 项目类别:
Genome-wide analysis of polyadenylation and translation in Xenopus
非洲爪蟾多聚腺苷酸化和翻译的全基因组分析
- 批准号:
9220834 - 财政年份:2014
- 资助金额:
$ 34.2万 - 项目类别:
Genome-wide analysis of polyadenylation and translation in Xenopus
非洲爪蟾多聚腺苷酸化和翻译的全基因组分析
- 批准号:
8742224 - 财政年份:2014
- 资助金额:
$ 34.2万 - 项目类别:
相似海外基金
Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
- 批准号:
10887038 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
- 批准号:
MR/X007979/1 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 34.2万 - 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
- 批准号:
10537275 - 财政年份:2022
- 资助金额:
$ 34.2万 - 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
- 批准号:
10661533 - 财政年份:2022
- 资助金额:
$ 34.2万 - 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
- 批准号:
10366610 - 财政年份:2022
- 资助金额:
$ 34.2万 - 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
- 批准号:
10467260 - 财政年份:2022
- 资助金额:
$ 34.2万 - 项目类别: