An LXR protein interaction network controlling macrophage lipid transporter expression in response to inflammatory-lipid crosstalk
LXR 蛋白相互作用网络控制巨噬细胞脂质转运蛋白表达以响应炎症-脂质串扰
基本信息
- 批准号:9335965
- 负责人:
- 金额:$ 45.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATP binding cassette transporter 1AddressApolipoprotein EArterial Fatty StreakAtherosclerosisAutomobile DrivingBiochemicalCellsCholesterolComplexDataDevelopmentDiseaseEngineered GeneEngineeringEnhancersEventFoam CellsGene ExpressionGenerationsGenesGenetic TranscriptionGoalsHealthHealth BenefitHeart DiseasesHomeostasisIndividualInflammatoryKnowledgeLesionLipidsMass Spectrum AnalysisMeasuresMediatingMissionModificationMolecularMutant Strains MiceNational Heart, Lung, and Blood InstituteOutcomePathologyPatientsPhosphorylationPreventionProteinsPublic HealthReceptor SignalingRegulator GenesRegulatory ElementResearchRoleSignal PathwaySignal TransductionSterolsStimulusTLR3 geneTestingTherapeuticTherapeutic InterventionToll-like receptorsWorkbasedesigngene functiongene repressionimprovedin vivoinnovationinsightlipid transportmacrophagemouse modelnovelnovel therapeutic interventionpreventpromoterprotein complexprotein transportresponsetranscription factorwestern diet
项目摘要
Macrophage foam cells are major drivers of the development and pathology of atherosclerosis. Exposure of
macrophages to sterol lipid and inflammatory TLR signals modifies gene regulatory networks controlling lipid
homeostasis, which can favor foam cell formation. There exists a fundamental gap in our understanding of the
molecular mechanisms by which TLR-lipid signal crosstalk impinges upon these networks and regulates foam
cell formation. The long-term goal is to understand the molecular mechanisms governing foam cell formation,
for the purpose of therapeutic intervention in atherosclerosis. Elucidating these mechanisms will not only
advance our understanding of disease pathology, but also provide crucial insights into functional interactions
that could be engineered to enhance lipid transporter expression as part of new therapeutic approaches to
counteract atherosclerosis. The objective of this proposal is to determine how NCOA5, SND1, and SART1
function to control lipid transporter gene expression, function and foam cell formation. The central hypothesis is
that these proteins are critical components of LXR transcriptional complexes assembled at the gene regulatory
elements (GREs) of lipid transporters Abca1 and Abcg1, and that TLR-lipid crosstalk promotes changes in the
composition and activity of these complexes, through phosphorylation, that favor gene repression, cholesterol
accumulation and foam cell formation. Based on preliminary data, this hypothesis will be tested by pursuing
three specific aims: (1) Elucidate the function of LXR-interacting proteins in the control of lipid transporter
expression, function and foam cell formation; (2) Elucidate the role of phosphorylation of LXR-interacting
proteins in the control of lipid transporter expression, function and foam cell formation; and (3) Characterize
LXR-dependent regulatory complexes assembled on lipid transporter GREs during foam cell formation, and
assess the role of NCOA5 in atherosclerosis, in vivo. Under the first aim, biochemical, molecular, and cellular
approaches will be used to address the signal-dependent role of NCOA5, SND1, and SART1 in regulating
expression of lipid transporters and foam cell formation. In the second aim, an innovative targeted mass
spectrometry (MS) strategy will be used to identify signal-dependent changes in the phosphorylation state of
NCOA5, SND1, and SART1, which will then be pursued using functional studies to define the impact of those
modifications. For the third aim, an innovative promoter enrichment quantitative MS (PE-QMS) approach will
be employed to characterize the composition of protein complexes assembled at GREs of Abca1 and Abcg1 in
foam cells in vivo. Moreover, we will assess the importance of NCOA5 in promoting foam cell formation and
atherosclerosis in vivo. The proposed research is significant because it will provide mechanisms to explain how
foam cell formation is regulated at the molecular level, and provide insights into proteins and interactions that
can be targeted to re-engineer gene regulatory networks to prevent foam cell formation and counteract
atherosclerosis. This has the potential to benefit the health of patients suffering from this disease.
巨噬细胞泡沫细胞是动脉粥样硬化发育和病理学的主要驱动因素。的接触
巨噬细胞到固醇脂质和炎症TLR信号修饰了控制脂质的基因调节网络
稳态,可以有利于泡沫细胞形成。我们对我们的理解存在根本差距
TLR-lipid信号串扰撞击这些网络并调节泡沫的分子机制
细胞形成。长期目标是了解有关泡沫细胞形成的分子机制,
为了治疗干预动脉粥样硬化。阐明这些机制不仅将
促进我们对疾病病理学的理解,但也为功能相互作用提供了重要的见解
可以设计以增强脂质转运蛋白表达,作为新的治疗方法的一部分
抵消动脉粥样硬化。该提议的目的是确定NCOA5,SND1和SART1如何
控制脂质转运蛋白基因表达,功能和泡沫细胞形成的功能。中心假设是
这些蛋白是在基因调节的LXR转录复合物的关键成分
脂质转运蛋白ABCA1和ABCG1的元素(GRE),TLR脂质串扰促进了促进的变化
这些复合物的组成和活性通过磷酸化,有利于基因抑制,胆固醇
积累和泡沫细胞形成。根据初步数据,将通过追求该假设来检验
三个特定目的:(1)阐明LXR相互作用蛋白在脂质转运蛋白中的功能
表达,功能和泡沫细胞形成; (2)阐明LXR相互作用的磷酸化的作用
控制脂质转运蛋白表达,功能和泡沫细胞形成的蛋白质; (3)特征
在泡沫细胞形成期间,在脂质转运蛋白GRE上组装的LXR依赖性调节络合物,并
评估NCOA5在体内动脉粥样硬化中的作用。在第一个目标下,生化,分子和细胞
方法将用于解决NCOA5,SND1和SART1在调节中的信号依赖性作用
脂质转运蛋白和泡沫细胞形成的表达。在第二个目标中,创新的目标质量
光谱法(MS)策略将用于识别信号依赖性变化的变化
NCOA5,SND1和SART1,然后将使用功能研究来定义这些影响
修改。对于第三个目标,创新的启动子富集定量MS(PE-QMS)方法将
被用来表征在ABCA1和ABCG1中组装的蛋白质复合物的组成
体内泡沫细胞。此外,我们将评估NCOA5在促进泡沫细胞形成和
动脉粥样硬化在体内。拟议的研究很重要,因为它将提供机制来解释如何
在分子水平调节泡沫细胞的形成,并提供对蛋白质和相互作用的见解
可以针对重新设计器基因调节网络,以防止泡沫细胞形成并抵消
动脉粥样硬化。这有可能使患有这种疾病的患者的健康受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY A RANISH其他文献
JEFFREY A RANISH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY A RANISH', 18)}}的其他基金
The Expedit-Isotopomeric CrossLinking Mass Spectrometry (Expedit-ICLMS) technology for mapping global and dynamic protein-protein interaction networks
用于绘制全局和动态蛋白质-蛋白质相互作用网络的快速同位素交联质谱 (Expedit-ICLMS) 技术
- 批准号:
10596082 - 财政年份:2020
- 资助金额:
$ 45.65万 - 项目类别:
The Expedit-Isotopomeric CrossLinking Mass Spectrometry (Expedit-ICLMS) technology for mapping global and dynamic protein-protein interaction networks
用于绘制全局和动态蛋白质-蛋白质相互作用网络的快速同位素交联质谱 (Expedit-ICLMS) 技术
- 批准号:
10377355 - 财政年份:2020
- 资助金额:
$ 45.65万 - 项目类别:
An LXR protein interaction network controlling macrophage lipid transporter expression in response to inflammatory-lipid crosstalk
LXR 蛋白相互作用网络控制巨噬细胞脂质转运蛋白表达以响应炎症-脂质串扰
- 批准号:
9161006 - 财政年份:2016
- 资助金额:
$ 45.65万 - 项目类别:
Mapping the Dynamic Architecture of the Human Mediator Complex
绘制人类调解复合体的动态架构
- 批准号:
8634083 - 财政年份:2013
- 资助金额:
$ 45.65万 - 项目类别:
Mapping the Dynamic Architecture of the Human Mediator Complex
绘制人类调解复合体的动态架构
- 批准号:
8493647 - 财政年份:2013
- 资助金额:
$ 45.65万 - 项目类别:
CHARACTERIZATION OF A NOVEL PROTEIN THAT INTERACTS WITH THE RNA POLYMERASE II P
与 RNA 聚合酶 II P 相互作用的新型蛋白质的表征
- 批准号:
7420814 - 财政年份:2006
- 资助金额:
$ 45.65万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Nonlipogenic ABCA1 inducers for ADRD - Supplement
ADRD 的非脂肪生成 ABCA1 诱导剂 - 补充品
- 批准号:
10832305 - 财政年份:2022
- 资助金额:
$ 45.65万 - 项目类别:
Interplay between meningeal lymphatics, high-density lipoproteins and border macrophages in cerebral amyloid angiopathy
脑淀粉样血管病中脑膜淋巴管、高密度脂蛋白和边界巨噬细胞之间的相互作用
- 批准号:
10674681 - 财政年份:2022
- 资助金额:
$ 45.65万 - 项目类别:
Lymphatic remodeling and transport of dietary fats in short gut syndrome
短肠综合征中的淋巴重塑和膳食脂肪运输
- 批准号:
10359136 - 财政年份:2019
- 资助金额:
$ 45.65万 - 项目类别: