Nanotopographic modulation of B cell signaling activation
B 细胞信号传导激活的纳米拓扑调节
基本信息
- 批准号:9281650
- 负责人:
- 金额:$ 18.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAntibody ResponseAntigen PresentationAntigen-Presenting CellsAntigensB-Cell ActivationB-Cell Receptor BindingB-LymphocytesBehaviorBiologicalBiomedical EngineeringCellsCellular MorphologyCommunicable DiseasesComplexCuesCytoskeletonDendritic CellsDevelopmentDevicesDissectionEngineeringEnvironmentGoalsImmuneImmune System DiseasesImmune responseImmunityImmunotherapyKnowledgeLigandsLightLiquid substanceLymphocyteMalignant NeoplasmsMechanicsMediatingMembraneMethodsMorphologyMovementMyosin ATPaseNanostructuresNanotopographyNatureOpticsPatternPropertyProteinsReceptor ActivationReceptor SignalingReceptors, Antigen, B-CellRegulationRegulatory PathwayResolutionRoleSignal TransductionStem cellsSurfaceTechnologyTestingTherapeuticVaccinesWorkbasecell behaviorcellular imagingdesignfluorescence imaginggenetic regulatory proteinhigh resolution imagingin vivoinnovationinsightknockout genelithographylive cell imagingmicrobialnanonanoparticlenanopatternnanosensorsnanostructurednovelpathogenphysical propertypreventreceptorresponsesmall molecule inhibitorvaccine development
项目摘要
B cell-mediated antibody responses are an essential component of immunity and the main target of vaccine
development. B cell signaling activation is triggered by the binding of B cell receptors (BCR) with antigen
displayed on the surface of professional antigen presenting cells. Although soluble antigen are able to activate
B cells, recent studies have shown that surface anchored antigens are significantly more efficient in triggering
B cell activation. Consequently, the physical nature of antigen presentation and the mechanical environment of
B cells are likely important for BCR activation. In particular, B cells encounter antigen on APC, which possess
complex surfaces with convoluted topographies, a fluid membrane and deformable cell bodies. Historically,
planar substrates have been used to study immune cell signaling and investigate the mechanisms behind
signal initiation. Previous work has shown that many behaviors of adherent and stem cells, such as
morphology, movement and differentiation, are modulated by surface topography. These studies demonstrate
that cells are able to respond to topographical cues, which in turn influences cell signaling. However, the
question of topographical modulation of signaling in immune cells has not been previously studied. Our
preliminary studies suggest that B cell signaling and actin dynamics are both influenced by the
nanotopography of the antigen-presenting surface. The central hypothesis of this project is that substrate
topography influences B signaling and activation. Furthermore, cytoskeletal dynamics at the interface
enable the cell to sense topography in order to generate an appropriate signaling response. We will test
this hypothesis by using novel nanotopographic surfaces that allow high resolution fluorescence imaging to
examine actin cytoskeletal dynamics, BCR signaling and actin regulators in B cells. Aim 1 will examine the
effects of substrate nanotopography on B-cell morphology, actin reorganization and signaling activation. We
will use nonlinear optical lithography to fabricate novel surfaces with nanotopographic patterns on materials
that permit high-resolution live cell imaging of the cell-substrate interface. Using these substrates, we will
establish that substrate topography is an important modulator of B cell signaling and cytoskeletal dynamics.
Aim 2 will define actin remodeling and their upstream regulators that are critical for topography sensing and the
control of BCR signaling. To do so, we will perturb the actomyosin cytoskeleton using small-molecule inhibitors
and gene knockout of regulatory proteins including WASP and N-WASP in modulating topographic sensing in
B cells via actin remodeling. We will further test the role of curvature sensing proteins in topographic sensing
by the control of membrane curvature. These studies will provide important new insights into how actin
regulatory pathways mediate topographic sensing, giving us another means of tuning B cell signaling with
nanotopography. More broadly, this work will shed light on mechanisms by which cells sense their environment
by surface receptors, which has considerable implications for biomedicine.
B细胞介导的抗体应答是免疫的重要组成部分,也是疫苗的主要靶点
发展B细胞信号传导激活由B细胞受体(BCR)与抗原的结合触发
展示在专职抗原呈递细胞的表面。虽然可溶性抗原能够激活
B细胞,最近的研究表明,表面锚定抗原在触发
B细胞活化。因此,抗原递呈的物理性质和抗原递呈的机械环境是不确定的。
B细胞可能对BCR活化很重要。特别地,B细胞遇到APC上的抗原,APC具有
复杂的表面,具有复杂的形貌、流体膜和可变形的细胞体。从历史上看,
平面基板已被用于研究免疫细胞信号传导和调查背后的机制
信号启动以前的研究表明,粘附细胞和干细胞的许多行为,如
形态、运动和分化受表面形貌的调节。这些研究证明
细胞能够对地形线索做出反应,这反过来又会影响细胞信号。但
免疫细胞中信号传导的局部调节问题以前没有研究过。我们
初步研究表明,B细胞信号传导和肌动蛋白动力学都受到
抗原呈递表面的纳米形貌。这个项目的核心假设是,
地形影响B信号和激活。此外,界面处的细胞骨架动力学
使细胞能够感测形貌,以便产生适当的信号响应。我们将测试
该假设通过使用允许高分辨率荧光成像的新型纳米形貌表面,
研究肌动蛋白细胞骨架动力学,BCR信号和B细胞中的肌动蛋白调节因子。目标1将审查
基底纳米形貌对B细胞形态、肌动蛋白重组和信号传导激活的影响。我们
将使用非线性光学光刻技术在材料上制造具有纳米形貌图案的新型表面
其允许细胞-基质界面的高分辨率活细胞成像。使用这些基质,我们将
建立基质形貌是B细胞信号传导和细胞骨架动力学重要调节剂。
目的2将定义肌动蛋白重塑及其上游调节因子,这些因子对地形感知至关重要,
控制BCR信号。为此,我们将使用小分子抑制剂扰乱肌动球蛋白细胞骨架
以及包括WASP和N-WASP在内的调节蛋白在调节地形感知中的基因敲除。
B细胞通过肌动蛋白重塑。我们将进一步测试曲率感应蛋白在地形感应中的作用
通过控制膜的曲率。这些研究将提供重要的新见解,
调节途径介导地形传感,给我们提供了另一种调节B细胞信号传导的方法,
纳米形貌学更广泛地说,这项工作将阐明细胞感知环境的机制
这对生物医学有很大的影响。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanosensing in the immune response.
- DOI:10.1016/j.semcdb.2017.08.031
- 发表时间:2017-11
- 期刊:
- 影响因子:7.3
- 作者:Upadhyaya A
- 通讯作者:Upadhyaya A
Subcellular topography modulates actin dynamics and signaling in B-cells.
- DOI:10.1091/mbc.e17-06-0422
- 发表时间:2018-07-15
- 期刊:
- 影响因子:3.3
- 作者:Ketchum CM;Sun X;Suberi A;Fourkas JT;Song W;Upadhyaya A
- 通讯作者:Upadhyaya A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arpita Upadhyaya其他文献
Arpita Upadhyaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arpita Upadhyaya', 18)}}的其他基金
Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导 - 从免疫反应到转录调节
- 批准号:
10693137 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导 - 从免疫反应到转录调节
- 批准号:
10406710 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
Supplement request for Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导的补充请求 - 从免疫反应到转录调控
- 批准号:
10799068 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
9889158 - 财政年份:2019
- 资助金额:
$ 18.74万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
10359737 - 财政年份:2019
- 资助金额:
$ 18.74万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
10115767 - 财政年份:2019
- 资助金额:
$ 18.74万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 18.74万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 18.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 18.74万 - 项目类别:
Postdoctoral Fellowships