California Collaborative Network to Promote Data Driven Care and Improve Outcomes in Early Psychosis (EPI-CAL)
加州合作网络促进数据驱动护理并改善早期精神病的结果 (EPI-CAL)
基本信息
- 批准号:9815936
- 负责人:
- 金额:$ 159.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-10 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionCaliforniaCaringClientClient satisfactionClinicClinicalCollaborationsCommunitiesCustomDataData AnalysesDevelopmentDimensionsEconomicsEffectivenessEnrollmentEnsureEquipment and supply inventoriesEvaluationFamily memberFeedbackFundingHealthHealth TechnologyIndividualInfrastructureInterventionMaintenanceMeasuresMonitorNational Institute of Mental HealthOutcomeParticipantProviderPsychometricsPsychotic DisordersQuality of lifeReference StandardsReportingResearchSchizophreniaSeveritiesSiteStandardizationSymptomsTarget PopulationsTechnologyTestingTimeTrainingUniversitiesValidationWorkbasecare outcomescare providersclinical carecommunity settingdashboardevidence baseexperiencefirst episode psychosisformative assessmenthealth dataimplementation scienceimprovedimproved outcomeinnovationmHealthmedical specialtiesnovelprogramspsychotic symptomssoundsupport networktooltreatment choicetreatment planningtreatment program
项目摘要
Project Summary
A prolonged first episode of psychosis (FEP) without adequate treatment is the most consistent predictor of
poor clinical and functional outcomes1, poor health outcomes2 and significant economic burden3. Team-based
“coordinated specialty care” (CSC)4 for early psychosis (EP) has established effectiveness in promoting clinical
and functional recovery5 . EP treatment programs have expanded rapidly with increased funding across the US
without formal coordination of training or implementation. While EP programs share many features, the lack of
state and national coordination and data infrastructure limits the capacity for large-scale evaluation or
accelerated dissemination of best practices6. Based on prior collaborations with 30 California (CA) EP
programs and experiences using mobile health (MOBI mHealth) technology to measure individual outcomes in
EP care, the UC Davis (UCD) team is uniquely poised to create EPI-CAL, a CA network that will contribute
systematically collected outcomes data on over 1000 FEP clients per year, from 6 community and 6 university
EP clinics, to a national EP network supported by the NIMH EPINET program. Building on our prior work
evaluating CA EP programs, EPI-CAL programs will participate in a formative evaluation in Year 1 to define
core EP clinical features, intervention targets, and outcomes needed to harmonize network input. A “core
battery” based on current measures collected at the sites, the PhenX toolkit7 and expanded to cover all critical
domains, will be installed across the network in Year 2. Core client outcomes and metrics of data use for
treatment decisions will be collected using the custom MOBI mHealth data network at the client, program, and
state level to allow easy data analysis, interpretation and dissemination. Training and ongoing monitoring will
be provided at all EPI-CAL sites to ensure appropriate implementation. EPI-CAL will contribute de-identified
data to the national coordinating hub. Using the RE-AIM implementation science framework8,9, we will
systematically evaluate the impact of MOBI on EP programs across 5 dimensions: reach, efficacy, adoption,
implementation, and maintenance (see Figure 1). To demonstrate the network’s research capacity, in the R34
component of this application, we propose to develop and validate a measure of the Duration of Untreated
Psychosis (DUP) that is feasible for use in community settings and psychometrically sound. Although DUP is a
significant predictor of both short-term CSC treatment response5 and long-term outcomes10 for FEP, no
measure currently exists that has been rigorously validated and is feasible for use by community providers7,11.
We will utilize stakeholder feedback (clients, family members, academic experts and CSC staff) to develop a
tool with standardized DUP definitions that includes anchored assessment of psychosis onset and start of
treatment. Developing such a tool will allow standardized assessment of this critical moderator of CSC
outcomes across the entire EPINET.
项目摘要
长期的精神病首次发作(FEP)而没有充分的治疗是最一致的预测因素,
临床和功能结局不良1、健康结局不良2和重大经济负担3。基于团队
为早期精神病患者提供的“协调不窋护理”4已确立成效,
和功能恢复5. EP治疗计划随着美国各地资金的增加而迅速扩大
没有培训或实施的正式协调。虽然EP程序共享许多功能,但缺乏
州和国家协调和数据基础设施限制了大规模评价的能力,或
加速传播最佳做法6.基于之前与30家加州(CA)EP的合作
使用移动的健康(MOBI mHealth)技术衡量个人成果的计划和经验,
EP护理,加州大学戴维斯分校(UCD)团队是唯一准备创建EPI-CAL,CA网络,将有助于
每年从6个社区和6所大学系统地收集1 000多名家庭暴力方案服务对象的结果数据
EP诊所,由NIMH EPINET计划支持的国家EP网络。基于我们之前的工作
评估CA EP计划,EPI-CAL计划将在第1年参与形成性评估,以确定
协调网络输入所需的核心EP临床特征、干预目标和结果。一个“核心
电池”的基础上收集的网站,PhenX工具包7,并扩大到涵盖所有关键的措施,
域,将在第2年通过网络安装。核心客户成果和数据使用指标,
将使用客户、项目和医疗机构的自定义MOBI mHealth数据网络收集治疗决策,
在州一级,便于数据分析、解释和传播。培训和持续监测将
在所有EPI-CAL研究中心提供,以确保适当实施。EPI-CAL将有助于去识别
向国家协调中心提供数据。使用RE-AIM实施科学框架8,9,我们将
从5个方面系统地评估MOBI对EP计划的影响:覆盖范围、有效性、采用率,
实现和维护(参见图1)。为了展示网络的研究能力,在R34中,
作为本申请的组成部分,我们建议开发和验证未治疗持续时间的衡量标准。
精神病(DUP)是可行的,用于社区设置和心理测量的声音。虽然DUP是一个
对于FEP,短期CSC治疗反应5和长期结果10的重要预测因素,否
目前存在的措施已经过严格验证,可供社区提供者使用7,11。
我们将利用利益相关者(客户、家庭成员、学术专家和CSC工作人员)的反馈,
具有标准化DUP定义的工具,包括对精神病发作和
治疗开发这样的工具将允许对CSC的这一关键主持人进行标准化评估
整个EPINET的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tara Ann Niendam其他文献
Tara Ann Niendam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tara Ann Niendam', 18)}}的其他基金
California Collaborative Network to Promote Data Driven Care and Improve Outcomes in Early Psychosis (EPI-CAL)
加州合作网络促进数据驱动护理并改善早期精神病的结果 (EPI-CAL)
- 批准号:
10015341 - 财政年份:2019
- 资助金额:
$ 159.05万 - 项目类别:
California Collaborative Network to Promote Data Driven Care and Improve Outcomes in Early Psychosis (EPI-CAL)
加州合作网络促进数据驱动护理并改善早期精神病的结果 (EPI-CAL)
- 批准号:
10437668 - 财政年份:2019
- 资助金额:
$ 159.05万 - 项目类别:
California Collaborative Network to Promote Data Driven Care and Improve Outcomes in Early Psychosis (EPI-CAL)
加州合作网络促进数据驱动护理并改善早期精神病的结果 (EPI-CAL)
- 批准号:
10215468 - 财政年份:2019
- 资助金额:
$ 159.05万 - 项目类别:
Cognitive Neuroscience of the Psychosis Prodrome
精神病前驱症状的认知神经科学
- 批准号:
7989729 - 财政年份:2010
- 资助金额:
$ 159.05万 - 项目类别:
Cognitive Neuroscience of the Psychosis Prodrome
精神病前驱症状的认知神经科学
- 批准号:
8423412 - 财政年份:2010
- 资助金额:
$ 159.05万 - 项目类别:
Cognitive Neuroscience of the Psychosis Prodrome
精神病前驱症状的认知神经科学
- 批准号:
8609601 - 财政年份:2010
- 资助金额:
$ 159.05万 - 项目类别:
Cognitive Neuroscience of the Psychosis Prodrome
精神病前驱症状的认知神经科学
- 批准号:
8258354 - 财政年份:2010
- 资助金额:
$ 159.05万 - 项目类别:
Cognitive Neuroscience of the Psychosis Prodrome
精神病前驱症状的认知神经科学
- 批准号:
8078018 - 财政年份:2010
- 资助金额:
$ 159.05万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 159.05万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 159.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 159.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 159.05万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 159.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 159.05万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 159.05万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 159.05万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 159.05万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 159.05万 - 项目类别:
Standard Grant