A path to personalized phenotypic prediction: unlocking the context-dependency of allelic effects
个性化表型预测之路:解锁等位基因效应的背景依赖性
基本信息
- 批准号:9382098
- 负责人:
- 金额:$ 37.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-18 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesArchitectureBiologicalBiological ModelsCommunitiesComplexDependenceDependencyDiseaseEnvironmentEnvironmental ExposureGene FrequencyGenesGeneticGenomeGenomicsGenotypeGoalsHereditary DiseaseHeritabilityHumanHuman GeneticsInbred StrainIndividualKnowledgeLinkMedical GeneticsMolecularPhenotypePopulationPredispositionProblem SolvingResearchResourcesSample SizeShapesVariantcostdisorder riskflygenetic associationinnovationprecision medicineprogramssuccesstrait
项目摘要
The long-term goal of my research program is to understand the biological basis for individual
variation. The genetic architecture of complex traits is not a static blueprint of the phenotype as it
was previously thought; rather, it is highly dynamic and context-dependent. I seek to understand
how genes interact with each other and their environment to shape variation between individuals
and what factors control the degree of individual variability. Technological advances have
recently fueled the ascent of personal genomics and the promise of precision medicine. The
success of medical genetics will depend on its capacity to personalize, however, individualized
prediction is a grand challenge. When the average effect of an allele does not capture a specific
allelic contribution under certain conditions (whether due to genetic background or the
environment), the link between genotype and phenotype will be missed. Given such context
dependency, understanding how genotypic variation influences variation in an individual's
phenotype demands a shift in focus from population averages to individual effects. Globally, we
are witnessing the rise of complex diseases related to dramatic changes in our daily
environments. These disorders have a clear environmental basis, but they also show strong
familial correlations: susceptibility to these diseases is highly heritable. Despite considerable
effort and resources, we have made little progress in understanding the genetic basis of these
common conditions. This highlight the need for a different approach to identify the causal genetic
factors underlying disorders characterized by non-additive interactions. To date, a key limitation
to address this problem has been that small sample sizes and skewed allele frequency spectrum
limit the power of detecting genetic associations. We have solved this problem by creating a new
community resource made of large, synthetic outbred populations. This enables us to break
away from traditional, artificial and underpowered approaches that have relied on inbred strains.
In parallel, we have developed a molecular and analytical pipeline allowing us to sequence
thousands of single flies at high throughput with very low cost and reliable accuracy. With this
new and versatile resource, we can rear thousands of genetically unique flies drawn from a
common genetic pool, expose them to a range of different environments, and contrast the
ensuing genetic architectures. Our inability to make progress in human genetics for diseases
with strong environmental components suggests a fundamental knowledge gap that my research
addresses in a powerful model system. Given that in humans there is extreme variation and
stochasticity in environmental exposure, we need a predictive framework that can accommodate
these individual-specific impacts. My research program paves a path to personalized phenotypic
prediction by unlocking the context dependence of allelic effects.
我的研究计划的长期目标是了解个体的生物学基础
变种。复杂性状的遗传结构不是表型的静态蓝图,因为它
它是以前认为的;相反,它是高度动态的和依赖于上下文的。我试图理解
基因如何相互作用以及它们的环境如何形成个体之间的差异
以及哪些因素控制着个体变异性的程度。技术的进步已经
最近推动了个人基因组学的兴起和精准医学的前景。这个
医学遗传学的成功将取决于它的个性化能力,然而,个性化
预测是一个巨大的挑战。当等位基因的平均效应不能捕捉到特定的
特定条件下的等位基因贡献(无论是由于遗传背景还是由于
环境),则将忽略基因型和表型之间的联系。在这样的背景下
依赖性,了解基因变异如何影响个体的变异
表型需要将重点从群体平均转移到个体影响。在全球范围内,我们
正在见证与我们日常生活中的戏剧性变化相关的复杂疾病的兴起
环境。这些疾病有明确的环境基础,但它们也显示出很强的
家族相关性:对这些疾病的易感性具有高度的遗传性。尽管有相当大的
努力和资源,我们在了解这些疾病的遗传基础方面进展甚微。
常见情况。这突显了需要一种不同的方法来识别因果遗传
以非相加相互作用为特征的疾病的潜在因素。到目前为止,一个关键的限制
解决这个问题的方法是样本量小和等位基因频谱不对称
限制检测遗传关联的能力。我们已经解决了这个问题,创造了一个新的
由大的、合成的远交种群组成的群落资源。这使我们能够突破
远离依赖近亲繁殖品系的传统、人工和动力不足的方法。
与此同时,我们已经开发了一种分子和分析管道,使我们能够对
数以千计的单只苍蝇以极低的成本和可靠的准确性在高吞吐量下运行。有了这个
新的和多才多艺的资源,我们可以饲养数以千计的遗传独特的苍蝇从一个
共同的基因库,将他们暴露在一系列不同的环境中,并将
随之而来的是遗传结构。我们无法在人类疾病遗传学方面取得进展
强烈的环境成分表明,我的研究存在基本的知识鸿沟
一个强大的模型系统中的地址。鉴于人类中存在极端的变异,
环境暴露的随机性,我们需要一个能够适应
这些特定于个人的影响。我的研究计划为个性化表型铺平了道路
通过解锁等位基因效应的上下文相关性进行预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julien Ayroles其他文献
Julien Ayroles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julien Ayroles', 18)}}的其他基金
Improved methods for inference of genotype-specific response to environmental toxins
推断对环境毒素的基因型特异性反应的改进方法
- 批准号:
10557856 - 财政年份:2019
- 资助金额:
$ 37.4万 - 项目类别:
A path to personalized phenotypic prediction: unlocking the context-dependency of allelic effects
个性化表型预测之路:解锁等位基因效应的背景依赖性
- 批准号:
10552203 - 财政年份:2017
- 资助金额:
$ 37.4万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 37.4万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 37.4万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 37.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 37.4万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 37.4万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 37.4万 - 项目类别:














{{item.name}}会员




