Real-Time Monitoring Device for Vascular Signals

血管信号实时监测装置

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Long-term dialysis success and cost is dependent on maintaining a patient's vascular access, a surgically- created artery-vein bypass region that can permit high blood flow. During dialysis, blood is drawn from a needle in the arterial side of the access, filtered by a hemodialysis unit, and then returned to the patient through a second downstream needle. The vascular access is also known as the "Achilles Heel" of hemodialysis, as maintaining the high flow characteristics (access patency) is critical to achieving efficient dialysis treatment. Vascular accesses are subjected to monitoring and surveillance to identify internal narrowing (stenosis) which can lead to access blockage (thrombosis). The goal of access monitoring is to pre- emptively treat stenosis with a routine surgical procedure before thrombosis occurs. Current access monitoring relies on skilled operators and specialized equipment and cannot be effectively applied to all patients due to economic realities within the hemodialysis standard-of-care. We propose clinical experiments to demonstrate and evaluate new approaches for non-invasive screening of hemodialysis vascular access patency. We are interested in studying the feasibility of autonomously gathering vascular signals using digital stethoscopes and skin temperature measurements to provide a continuous and real-time measure of arteriovenous graft patency. We will pursue this research to answer hypotheses regarding the reproducibility and feasibility of this non-invasive monitoring method, and to demonstrate innovative technology to enable clinical application. A second objective of this work is to train Steve Majerus to be an independent researcher capable of investigating future directions for vascular health technology. Our research plan will be conducted through two objectives. Objective 1 will conduct a clinical study at the Cleveland VA Midtown Hemodialysis Center in which digital stethoscopes and infrared (IR) thermometers will be used to gather non-invasive signals near patient's vascular accesses. These signals have been shown to be accurate indicators of access patency; we seek to understand the signal characteristics and variability across patients and within patients on chronic dialysis. Objective 2 will determine the feasibility of non-invasively measuring vascular sounds and skin temperatures using wireless electronics. This is an important experiment to understand the reproducibility and variability of this approach. To make an impact within the realities of over-loaded dialysis clinics, the measurement method must be convenient to use and accurate when used by a non-physician. The limitations of the proposed wireless approach will be assessed to determine prototype feasibility and future directions. This study aims to pursue hypothesis-driven research while producing innovative platform technologies in the fields of vascular signal analysis and wireless, wearable sensor design. A comprehensive analysis of phonoangiograms and skin temperature measurements relative to vascular access stenosis level and location has not yet been published. Published examples of wireless screening tools have relied on traditional auscultation via a skilled operator. We seek to demonstrate the feasibility of state-of-the-art electronics and sensor integration technology that is suitable for clinical deployment. This technology would be an excellent candidate for clinical translation as it could enable simple screening of vascular access patency within the economic constraints of freestanding dialysis clinics.
 描述(由申请人提供): 长期透析的成功和成本取决于维持患者的血管通路,这是一个手术创建的动脉-静脉旁路区域,可以允许高血流量。在透析期间,血液从通路的动脉侧的针抽取,由血液透析单元过滤,然后通过第二下游针返回到患者。血管通路也被称为血液透析的“阿喀琉斯之踵”,因为保持高流量特性(通路通畅性)对于实现有效的透析治疗至关重要。对血管通路进行监测和监视,以识别可能导致通路堵塞(血栓形成)的内部狭窄(狭窄)。入路监测的目的是在血栓形成发生前通过常规外科手术预先治疗狭窄。 目前的通路监测依赖于熟练的操作员和专业设备,并且由于血液透析标准护理中的经济现实,不能有效地应用于所有患者。我们提出临床实验来证明和评估新的方法,无创筛选血液透析血管通路通畅。我们有兴趣研究使用数字听诊器和皮肤温度测量自动收集血管信号的可行性,以提供动静脉移植物通畅性的连续和实时测量。我们将继续这项研究,以回答有关这种非侵入性监测方法的可重复性和可行性的假设,并展示创新技术,使临床应用。这项工作的第二个目标是培训史蒂夫Majerus成为一个独立的研究人员能够调查未来的方向血管健康技术。我们的研究计划将通过两个目标进行。 目标1将在Cleveland VA Midtown血液透析中心进行一项临床研究,其中将使用数字听诊器和红外(IR)温度计收集患者血管通路附近的无创信号。这些信号已被证明是通路通畅性的准确指标;我们试图了解患者之间和慢性透析患者内部的信号特征和变异性。 目标2将确定使用无线电子设备无创测量血管声音和皮肤温度的可行性。这是一个重要的实验,以了解这种方法的可重复性和可变性。为了在超负荷透析诊所的现实中产生影响,测量方法必须方便使用,并且在由非医生使用时准确。将评估拟议的无线方法的局限性,以确定原型的可行性和未来的发展方向。 本研究旨在进行假设驱动的研究,同时在血管信号分析和无线可穿戴传感器设计领域产生创新平台技术。尚未发表关于血管通路狭窄水平和位置的声血管造影和皮肤温度测量的综合分析。无线筛查工具的公开示例依赖于通过熟练操作员进行的传统听诊。我们试图证明适合临床部署的最先进的电子和传感器集成技术的可行性。该技术将是临床转化的一个很好的候选者,因为它可以在独立透析诊所的经济限制范围内实现血管通路通畅性的简单筛选。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flexible, Structured MWCNT/PDMS Sensor for Chronic Vascular Access Monitoring.
用于慢性血管通路监测的灵活、结构化 MWCNT/PDMS 传感器。
Stenosis Characterization and Identification for Dialysis Vascular Access.
SKIN-COUPLED PVDF MICROPHONES FOR NONINVASIVE VASCULAR BLOOD SOUND MONITORING.
用于无创血管血音监测的皮肤耦合 PVDF 麦克风。
Power Wheelchair Footplate Pressure and Positioning Sensor.
电动轮椅踏板压力和定位传感器。
Vascular Graft Pressure-Flow Monitoring Using 3D Printed MWCNT-PDMS Strain Sensors.
使用 3D 打印的 MWCNT-PDMS 应变传感器监测血管移植物压力流量。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steve Majerus其他文献

Steve Majerus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steve Majerus', 18)}}的其他基金

Triggered sacral neuromodulation to treat neurogenic detrusor overactivity based on algorithmic classification of bladder filling status from wireless pressure data.
根据无线压力数据对膀胱充盈状态的算法分类,触发骶神经调节来治疗神经源性逼尿肌过度活动。
  • 批准号:
    10317462
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Toward wearable ultrasonic neurostimulation for daily at-home treatment of urinary urge incontinence
用于日常家庭治疗急迫性尿失禁的可穿戴超声神经刺激
  • 批准号:
    10363621
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了