Toward wearable ultrasonic neurostimulation for daily at-home treatment of urinary urge incontinence
用于日常家庭治疗急迫性尿失禁的可穿戴超声神经刺激
基本信息
- 批准号:10363621
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAction PotentialsAddressAdultAffectAgeAgingAmputeesAnatomyAnimal ModelAutomobile DrivingAwardBathingBehaviorBiologicalBladderComputer SimulationDataDevicesDiabetes MellitusDiagnostic ImagingDrug TargetingEconomic BurdenElderlyElectric StimulationElementsEnsureEquipmentExtravasationFemaleFillerFrequenciesFunctional disorderFundingFutureGastrocnemius MuscleGeometryGoalsHealth Services AccessibilityHomeHumanImplantIncomeIncontinenceIndependent LivingInvestigationLaboratoriesLeadLimb structureLocalesLocationLong-Term EffectsMajor Depressive DisorderMeasurementMeasuresMechanicsMenopauseMental DepressionModelingNerveNerve FibersNeuropathyNursing HomesObesityOperative Surgical ProceduresOrganOutcomeOveractive BladderPainPainlessPatientsPatternPeripheralPeripheral Nerve StimulationPharmaceutical PreparationsPhysiologic pulsePopulationPost-Traumatic Stress DisordersPre-Clinical ModelProstatePulse RatesRattusReadinessReflex actionRefractoryRehabilitation therapyResearchRiskRisk FactorsRuralSafetySepsisSkinSocial isolationStructure of tibial nerveSurfaceSynapsesTechnologyTestingThinnessTransducersTranslatingTranslationsUltrasonic TransducerUltrasonicsUltrasonographyUrge IncontinenceUrinary IncontinenceUrinary tract infectionUrineVeteransWaterWomanWorkcompliance behaviorcostdecubitus ulcerdesignexperiencefall riskflexibilityfunctional declineimplantationindexinginnovationlensmalemicturition urgencymigrationmilitary servicemilitary veterannerve thresholdneuroregulationnew technologynovelpainful neuropathypressureprimary outcomerelating to nervous systemresearch clinical testingresponsesciatic nervesensorurinarywearable device
项目摘要
Urinary incontinence (UI) significantly impacts approximately 30% of the world’s population. The most
prevalent condition, overactive bladder (OAB), affects 15% of adults and often manifests with other urinary
dysfunctions causing urine leakage. OAB has an enormous US economic burden of $83 billion, in part from
increased nursing home use due to UI. Incontinence profoundly impacts dignified, independent living, contributes
to urinary tract infections, pressure ulcer sepsis and fall risk, and is a leading factor in functional decline among
the elderly. As a result, UI is a major factor in clinical depression and contributes to social isolation . The risk
factors for OAB (aging, obesity, diabetes, menopause, enlarged prostate) are disproportionately experienced by
Veterans, and UI associates with military service and post-traumatic stress disorder in both male and female
Veterans. Therefore UI (and OAB in particular) will continue to affect older Veterans disproportionately.
Of the limited treatments for refractory OAB, percutaneous tibial nerve stimulation (PTNS) is likely the
cheapest and safest. This project will demonstrate the feasibility of using ultrasonic nerve stimulation (UNS) as
a novel alternative to PTNS. The rapidly decreasing cost for ultrasonic equipment is driving investigation of UNS
to deliver targeted energy to the nerve without breaking the skin or causing discomfort from surface stimulation.
UNS has many potential rehabilitation uses, i.e. for the treatment of neuropathic or amputee pain, or for locations
that are difficult to access surgically. These treatments are all opportunities for future research. However,
beginning with OAB is an excellent option for initial translation because the tibial nerve is superficial, PTNS is an
established therapy, and because there are designated safe limits for ultrasound exposure. At this stage of
research, our first goal is to generate the needed evidence to compete for funding to translate UNS to Veterans
with OAB. Wearable tibial neurostimulation that is easy to use in the home would greatly expand access to these
rehabilitation treatments for Veterans who have limited mobility, income, or live in rural locales.
Critically, prior studies have demonstrated that low-intensity tibial UNS modulates bladder function and that
peripheral UNS occurs with ultrasonic intensities below FDA safety limits. However, the UNS energy thresholds
to produce compound action potentials (CAP) in the tibial and sciatic nerves have not been determined in the
context of UI. Further, all prior UNS research has used bulky transducers which are not usable outside of
laboratory settings. This work will address two feasibility challenges for future funding and translation: 1)
identifying the minimum UNS intensity needed to noninvasively modulate CAPs and inhibit bladder contractions
and 2) showing that thin, flexible, beam-formed arrays can produce ultrasonic intensities up to FDA safety limits
at human anatomical scales. These data will be generated in two Specific Aims (SA).
SA1 will determine the nerve activation and bladder inhibition power thresholds using ultrasonic nerve
stimulation in an established rat model of bladder reflex contractions. Commercial fixed-focus transducers and
an anesthetized animal model must be used in this aim because wearable devices for UNS are not yet available.
Primary outcomes in this aim are i) sciatic CAP amplitude, ii) gastrocnemius electromyogram (EMG) amplitudes,
and iii) bladder contraction rates. Outcomes from variable-intensity low-frequency UNS and high-frequency UNS
will be compared to conventional electrical tibial nerve stimulation.
SA2 will develop a wearable flexible ultrasonic neuromodulation array and demonstrate that flexible
ultrasound arrays can generate mechanical index (MI) in the estimated neuromodulation range. In SA2a we will
design array geometries and acoustic lens profiles using computer simulations and validate pressure levels with
a water bath hydrophone. In SA2b we will fabricate flexible arrays with direct-printed acoustic fillers and lenses,
and substrate-printed curvature sensors. Beam steering patterns will be iterated to produce a focal region smaller
than 0.1 cm3 and MI between 0.5–1.9, within the estimated neuromodulation range and below FDA safety limits.
尿失禁(UI)严重影响大约30%的世界人口。最多的
流行的疾病是膀胱过度活动(OAB),影响15%的成年人,通常表现为其他尿路
功能障碍导致尿液渗漏。OAB给美国带来了830亿美元的巨大经济负担,部分原因是
由于用户界面,增加了疗养院的使用量。大小便失禁深刻影响有尊严、独立的生活,有助于
尿路感染、压疮败血症和跌倒的风险,是导致以下人群功能下降的主要因素
老年人。因此,UI是临床抑郁的一个主要因素,并有助于社交隔离。风险
OAB的因素(衰老、肥胖、糖尿病、更年期、前列腺肥大)不成比例地由以下因素经历
退伍军人和UI与男性和女性的服兵役和创伤后应激障碍有关
退伍军人。因此,UI(特别是OAB)将继续不成比例地影响年长的退伍军人。
在难治性OAB的有限治疗中,经皮胫神经刺激(PTNS)可能是
最便宜、最安全的。本项目将演示使用超声神经刺激(UNS)作为
一种替代PTNS的新方法。超声设备成本的快速下降推动了对UNS的研究
在不破坏皮肤或表面刺激引起不适的情况下,将目标能量传递到神经。
UNS有许多潜在的康复用途,即用于治疗神经病理性或截肢者的疼痛,或用于局部
很难通过手术接触到。这些治疗方法都是未来研究的机会。然而,
从OAB开始是一个很好的初始平移选择,因为胫神经很浅,PTNS是一种
因为超声波照射有指定的安全限度。在这个阶段
研究,我们的第一个目标是产生所需的证据,以竞争资金,将UNS翻译为退伍军人
与OAB合作。易于在家中使用的可穿戴式胫骨神经刺激将极大地扩大获得这些刺激的途径
为行动不便、收入有限或生活在农村地区的退伍军人提供康复治疗。
重要的是,先前的研究已经证明,低强度的胫骨UNS可以调节膀胱功能,并且
外周UNS发生时,超声强度低于FDA安全限值。然而,联合国系统的能源门槛
在胫神经和坐骨神经中产生复合动作电位(CAP)的方法尚未在
用户界面的上下文。此外,所有先前的UNS研究都使用了笨重的换能器,这些换能器在外部无法使用
实验室环境。这项工作将解决未来资金和翻译面临的两个可行性挑战:1)
确定非侵入性调节膀胱帽和抑制膀胱收缩所需的最小UNS强度
2)展示了薄的、灵活的、波束形成的阵列可以产生高达FDA安全限度的超声强度
在人体解剖尺度上。这些数据将在两个特定目标(SA)中生成。
SA1将利用超声神经测定神经激活和膀胱抑制功率阈值
在已建立的大鼠膀胱反射收缩模型中进行刺激。商用定焦换能器和
为了达到这个目的,必须使用麻醉的动物模型,因为目前还没有用于UNS的可穿戴设备。
该目的的主要结果是:i)坐骨神经CAP幅度,ii)腓肠肌肌电(EMG)幅度,
和iii)膀胱收缩速度。可变强度低频UNS和高频UNS的结果
将其与传统的电刺激胫神经进行比较。
SA2将开发一种可穿戴的柔性超声神经调制阵列,并展示
超声阵列可以在估计的神经调节范围内产生机械指数(MI)。在SA2a,我们将
使用计算机模拟设计阵列几何形状和声透镜轮廓,并使用
水浴式水听器。在SA2B中,我们将用直接印制的声学填充物和透镜来制造柔性阵列,
以及基板印制的曲率传感器。波束方向图将被迭代以产生更小的焦域
超过0.1cm3,MI在0.5-1.9之间,在估计的神经调节范围内,低于FDA的安全限度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Majerus其他文献
Steve Majerus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Majerus', 18)}}的其他基金
Triggered sacral neuromodulation to treat neurogenic detrusor overactivity based on algorithmic classification of bladder filling status from wireless pressure data.
根据无线压力数据对膀胱充盈状态的算法分类,触发骶神经调节来治疗神经源性逼尿肌过度活动。
- 批准号:
10317462 - 财政年份:2021
- 资助金额:
-- - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
-- - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




