QuBBD: Deep Poisson Methods for Biomedical Time-to-Event and Longitude Data
QuBBD:生物医学事件时间和经度数据的深度泊松方法
基本信息
- 批准号:9392642
- 负责人:
- 金额:$ 26.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdvanced DevelopmentAlgorithmsArchitectureBig DataBig Data to KnowledgeBlood GlucoseBlood PressureCategoriesCharacteristicsClinicalClinical DataClinical ResearchComorbidityComputer softwareDataData SourcesDevelopmentElectronic Health RecordEventFactor AnalysisFormulationFundingGaussian modelGeneticGray unit of radiation doseHazard ModelsHealth systemIndividualLearningLinkLipidsMachine LearningMedical GeneticsMedical HistoryMetabolicMethodologyMethodsMissionModalityModelingNoiseOutcomePerformancePersonsPharmacologyPrincipal InvestigatorPublicationsRecommendationResearchResearch PersonnelRiskRisk FactorsRisk stratificationSpecific qualifier valueStructureTechniquesTimeTranslatingTranslationsUnited States National Institutes of HealthWorkanalogcardiovascular disorder epidemiologydata accessdata modelingdatabase of Genotypes and Phenotypesgenetic informationhazardinsightlearning strategynovelpatient stratificationpractical applicationprecision medicinepredictive modelingprognosticrepositoryresponsesemiparametrictemporal measurementtime usetooltreatment response
项目摘要
The proposed research directly addresses the mission of NIH's BD2K initiative by developing appropriate tools to derive novel insights from available Big Data and by adapting sophisticated machine learning methodology to a framework familiar to biomedical researchers. This new methodology will be one of the first to enable use of machine learning techniques with time-to-event and continuous longitudinal outcome data, and will be the first such extension of the deep Poisson model. In essence, this undertaking builds the missing bridge between the need for advanced prognostic and predictive techniques among biomedical and clinical researchers and the unrealized potential of deep learning methods in the context of biomedical data collected longitudinally. To facilitate smooth adoption in clinical research, the results will be translated into terms familiar to applied practitioners through publications and well-described software packages. The application of the methodology developed will be illustrated using data from the NIH dbGAP repository, thereby further promoting the use of open access data sources.
拟议的研究直接解决了NIH BD2K计划的使命,方法是开发适当的工具,从可用的大数据中获得新的见解,并将复杂的机器学习方法应用于生物医学研究人员熟悉的框架。这种新的方法将是第一个能够使用机器学习技术与事件发生时间和连续纵向结果数据的方法之一,也将是深度泊松模型的第一个扩展。从本质上讲,这项工作在生物医学和临床研究人员对高级预后和预测技术的需求与纵向收集的生物医学数据背景下深度学习方法未实现的潜力之间建立了缺失的桥梁。为了促进临床研究的顺利采用,将通过出版物和描述良好的软件包将结果翻译为应用从业人员熟悉的术语。将使用NIH dbGAP存储库中的数据说明所开发方法的应用,从而进一步促进开放获取数据源的使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence Carin其他文献
Lawrence Carin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 26.22万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 26.22万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 26.22万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant














{{item.name}}会员




