Single-molecule studies of Sec-dependent protein translocation
Sec 依赖性蛋白质易位的单分子研究
基本信息
- 批准号:9374906
- 负责人:
- 金额:$ 19.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-15 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisAmino Acid SequenceAnimalsAntibioticsAntibodiesAutomobile DrivingBacteriaBacterial InfectionsBindingBinding ProteinsBiochemicalBiologicalBiological AssayCarrier ProteinsCell membraneCell physiologyCellular MembraneChemicalsConflict (Psychology)CytosolDataDefectDependenceDestinationsDevelopmentDiabetes MellitusDiseaseDrug TargetingEndoplasmic ReticulumEnzymesEukaryotaFoundationsIndividualInsulinIonsLeadLightLipid BilayersLiteratureMalignant NeoplasmsMeasurementMeasuresMechanicsMembraneMolecularMolecular ConformationMolecular MachinesMotorMovementNatureOperating SystemOrganismPathway interactionsPermeabilityPower strokeProcessProtein Export PathwayProtein SecretionProtein translocationProteinsReportingResistanceResolutionRoleSpectrum AnalysisStructureSurfaceSystemTestingTimeVariantVirulence FactorsWorkdrug developmentexperimental studyfightinginsightlaser tweezermacromoleculemechanical forcemechanical loadmillisecondmolecular dynamicsmutantnanometernovelpathogenic bacteriapolypeptideprotein transportpublic health relevancesingle moleculesolutetemporal measurementtool
项目摘要
Project Summary
Many essential proteins are inserted into membranes or secreted. Because they are synthesized in the cytosol,
these proteins must cross a lipid bilayer to reach their destination and become functional. The majority of
proteins bound for secretion or membrane insertion transits through the universally conserved Sec translocon.
The Sec pathway allows proteins destined for export from the cytosol to cross the endoplasmic reticulum
membrane in eukaryotes and the plasma membrane in bacteria. The essential role of Sec-dependent
translocation in many cellular pathways makes elucidation of the underlying molecular mechanisms an
important task. Substrates of the Sec system include virulence factors and antibiotic-inactivating enzymes in
bacteria, and range from insulin to antibodies in animals. Perturbations in the Sec-pathway can lead to
numerous diseases, including cancer and diabetes. A mechanistic understanding of the translocation process
can fuel the development of drugs that target this central cellular pathway.
Sec-dependent protein translocation has been studied extensively with biochemical and structural approaches,
characterizing many of its components. However, the dynamics of the process are not well understood. During
translocation, the translocon channel must allow the polypeptide to move while maintaining a permeability
barrier for ions and other solutes. How the channel interacts with polypeptide substrates to achieve these
seemingly conflicting requirements is not known. Another key question that has remained unanswered is how
the molecular machines that associate with the translocon convert chemical energy into the mechanical work
that powers translocation. Many of the important outstanding questions concerning the Sec translocation
system could be answered if it were possible to follow the passage of a protein through the channel in real-time
with high spatial and temporal resolution, but this capability is not presently available.
Single-molecule approaches, enabling observation and manipulation of individual macromolecules, have
provided unprecedented insights into biological mechanisms. I propose to investigate the mechanisms of Sec-
dependent protein translocation with optical tweezers. This approach enables us to unravel the mechanisms
underlying Sec-dependent protein translocation. Our studies will yield new and exciting insights into the
mechanisms employed by the translocation machinery to transport proteins out of the cytosol.
项目摘要
许多必需的蛋白质被插入细胞膜或被分泌。因为它们是在细胞质中合成的,
这些蛋白质必须穿过脂质双层才能到达它们的目的地并发挥功能。大多数
结合用于分泌或膜插入的蛋白质通过普遍保守的Sec易位子转运。
Sec途径允许蛋白质从胞质溶胶中输出穿过内质网
真核生物的质膜和细菌的质膜。Sec-dependent的重要作用
在许多细胞途径中的易位使得阐明了潜在的分子机制,
重要的任务。Sec系统的底物包括毒力因子和抗生素失活酶
从胰岛素到动物体内的抗体。SEC途径的扰动可导致
许多疾病,包括癌症和糖尿病。对易位过程的机械理解
可以促进针对这一中心细胞通路的药物的开发。
SEC依赖的蛋白质易位已经用生物化学和结构方法进行了广泛的研究,
它的许多组成部分。然而,人们对这一进程的动态并不十分了解。期间
在易位中,易位子通道必须允许多肽移动,同时保持渗透性。
离子和其他溶质的屏障。通道如何与多肽底物相互作用以实现这些
似乎相互矛盾的要求是未知的。另一个尚未回答的关键问题是,
与易位子相关的分子机器将化学能转化为机械功
为易位提供动力关于Sec易位的许多重要的悬而未决的问题
如果能够实时跟踪蛋白质通过通道的情况,
具有高的空间和时间分辨率,但这种能力目前还不可用。
单分子方法能够观察和操纵单个大分子,
为生物学机制提供了前所未有的见解。我建议调查的机制,秒-
依赖蛋白质移位的光镊技术。这种方法使我们能够解开
潜在的Sec依赖性蛋白质易位。我们的研究将产生新的和令人兴奋的见解,
易位机制将蛋白质转运出胞质溶胶。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Kaiser其他文献
Christian Kaiser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Kaiser', 18)}}的其他基金
Molecular Origins of Neurodegeneration through Force Detangling of Toxic RNA
通过强制解开有毒 RNA 导致神经退行性变的分子起源
- 批准号:
10667873 - 财政年份:2023
- 资助金额:
$ 19.77万 - 项目类别:
Folding and Chaperone Interactions of Multi-domain Proteins
多结构域蛋白质的折叠和分子伴侣相互作用
- 批准号:
10446687 - 财政年份:2017
- 资助金额:
$ 19.77万 - 项目类别:
Folding and chaperone interactions of multi-domain proteins
多结构域蛋白质的折叠和分子伴侣相互作用
- 批准号:
9217889 - 财政年份:2017
- 资助金额:
$ 19.77万 - 项目类别:
Folding and Chaperone Interactions of Multi-domain Proteins
多结构域蛋白质的折叠和分子伴侣相互作用
- 批准号:
10662086 - 财政年份:2017
- 资助金额:
$ 19.77万 - 项目类别:
Single molecule analysis of nascent protein folding
新生蛋白质折叠的单分子分析
- 批准号:
7570874 - 财政年份:2008
- 资助金额:
$ 19.77万 - 项目类别:
相似海外基金
Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
- 批准号:
23K06972 - 财政年份:2023
- 资助金额:
$ 19.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
- 批准号:
23KJ0939 - 财政年份:2023
- 资助金额:
$ 19.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
- 批准号:
19K07013 - 财政年份:2019
- 资助金额:
$ 19.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
- 批准号:
16K05820 - 财政年份:2016
- 资助金额:
$ 19.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
- 批准号:
16K08426 - 财政年份:2016
- 资助金额:
$ 19.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
- 批准号:
25461010 - 财政年份:2013
- 资助金额:
$ 19.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
- 批准号:
23654177 - 财政年份:2011
- 资助金额:
$ 19.77万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
- 批准号:
22550105 - 财政年份:2010
- 资助金额:
$ 19.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
- 批准号:
NE/D00232X/1 - 财政年份:2006
- 资助金额:
$ 19.77万 - 项目类别:
Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
- 批准号:
16500189 - 财政年份:2004
- 资助金额:
$ 19.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)