Immune Monitoring and Analysis of Cancer at Stanford (IMACS)
斯坦福大学癌症免疫监测和分析 (IMACS)
基本信息
- 批准号:9456826
- 负责人:
- 金额:$ 1256万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adaptive Immune SystemAlgorithmsAlpha CellArchivesBioinformaticsBiological AssayCancer ControlCellsChromatinCitrusClinicalClinical TrialsComplexCustomDataData FilesData SetDatabasesDevelopmentDiseaseEnsureEpigenetic ProcessFlow CytometryGenomicsHealthHumanImageImmuneImmunologic MonitoringImmunologicsImmunology procedureInformaticsLongevityMachine LearningMalignant NeoplasmsMeasuresMethodsMiningMultiplexed Ion Beam ImagingNatureNetwork-basedOutcomePhenotypePopulationQuality ControlReportingResearchResearch PersonnelSamplingSpecimenStandardizationStructureTechnologyTissuesWorkcancer clinical trialcytokinedesignexperiencehigh dimensionalityimage reconstructioninnovationinterestnew technologynext generationnoveloperationpredictive markerprogramsresponsetranscriptome sequencingtreatment response
项目摘要
IMMUNE MONITORING AND ANALYSIS OF CANCER AT STANFORD (IMACS)
Abstract
The Center for Immune Monitoring and Analysis of Cancer at Stanford (IMACS) will perform highly
comprehensive assays of immune phenotype and function for NCI-identified clinical trials. These will include
standardized assays already developed on CyTOF, high-dimensional flow cytometry, Luminex, TCRseq, and
RNAseq platforms. As part of the program we will also standardize and offer as assays Stanford-invented
technologies under development, including Multiplexed Ion Beam Imaging (MIBI) and Assays of Transposon-
Accessible Chromatin (ATAC-seq). We have designed our center structure to work with investigators to define
the assays best suited to the immunological questions being posed, and match these with the required sample
types. We will perform quality control measures on all assays, as well as generate a standard report for each
assay and project. Data will be organized via our online database, Stanford Data Miner, to ensure data
longevity and transferability, as well as access to both raw data files and analyzed results. Finally, we will work
with investigators on novel bioinformatics approaches to mining these high-dimensional data sets. These will
include approaches designed for a single data type (e.g., viSNE and Citrus for CyTOF and flow cytometry
data), as well as approaches for integrating data across assays, using appropriate machine learning algorithms
to aid NCI researchers in identifying immune hallmarks central to their trials.
Relevance: The IMACS center will provide access to a suite of state-of-the-art immune assays, many of them
developed or refined at Stanford. This unmatched set of technologies will facilitate the discovery of new
biomarkers for predicting cancer outcome or therapeutic response, as well as defining potential new
mechanisms of immune control of cancer.
斯坦福癌症免疫监测和分析 (IMACS)
抽象的
斯坦福大学癌症免疫监测和分析中心 (IMACS) 将表现出色
针对 NCI 确定的临床试验的免疫表型和功能的综合分析。 这些将包括
已在 CyTOF、高维流式细胞术、Luminex、TCRseq 和
RNAseq 平台。 作为该计划的一部分,我们还将标准化并提供斯坦福大学发明的检测方法
正在开发的技术,包括多重离子束成像 (MIBI) 和转座子检测 -
可及染色质 (ATAC-seq)。 我们设计了我们的中心结构,以便与研究人员合作来定义
最适合所提出的免疫学问题的测定,并将其与所需的样品相匹配
类型。 我们将对所有检测执行质量控制措施,并为每个检测生成标准报告
分析和项目。 数据将通过我们的在线数据库斯坦福数据挖掘器进行组织,以确保数据
寿命和可转移性,以及对原始数据文件和分析结果的访问。 最后,我们将努力
与研究人员一起开发新的生物信息学方法来挖掘这些高维数据集。 这些将
包括为单一数据类型设计的方法(例如用于 CyTOF 和流式细胞术的 viSNE 和 Citrus)
数据),以及使用适当的机器学习算法在分析中整合数据的方法
帮助 NCI 研究人员识别其试验的核心免疫标志。
相关性:IMACS 中心将提供一套最先进的免疫测定方法,其中有许多方法
在斯坦福大学开发或完善。 这套无与伦比的技术将有助于发现新的
用于预测癌症结果或治疗反应以及定义潜在的新生物标志物
癌症的免疫控制机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Curtis Bendall其他文献
Sean Curtis Bendall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Curtis Bendall', 18)}}的其他基金
Uncoupling Age- Versus Cognitive-Related Cellular Senescence in Alzheimer's Disease
阿尔茨海默病中年龄与认知相关的细胞衰老的解耦
- 批准号:
10454751 - 财政年份:2020
- 资助金额:
$ 1256万 - 项目类别:
Uncoupling Age- Versus Cognitive-Related Cellular Senescence in Alzheimer's Disease
阿尔茨海默病中年龄与认知相关的细胞衰老的解耦
- 批准号:
10043941 - 财政年份:2020
- 资助金额:
$ 1256万 - 项目类别:
Uncoupling Age- Versus Cognitive-Related Cellular Senescence in Alzheimer's Disease
阿尔茨海默病中年龄与认知相关的细胞衰老的解耦
- 批准号:
10670998 - 财政年份:2020
- 资助金额:
$ 1256万 - 项目类别:
Uncoupling Age- Versus Cognitive-Related Cellular Senescence in Alzheimer's Disease
阿尔茨海默病中年龄与认知相关的细胞衰老的解耦
- 批准号:
10222561 - 财政年份:2020
- 资助金额:
$ 1256万 - 项目类别:
Stanford Cancer Immune Monitoring and Analysis Center (CIMAC)
斯坦福癌症免疫监测与分析中心 (CIMAC)
- 批准号:
10730465 - 财政年份:2017
- 资助金额:
$ 1256万 - 项目类别:
A single-cell platform to discover and study regulators of human development
发现和研究人类发育调节因子的单细胞平台
- 批准号:
8425506 - 财政年份:2013
- 资助金额:
$ 1256万 - 项目类别:
A single-cell platform to discover and study regulators of human development
发现和研究人类发育调节因子的单细胞平台
- 批准号:
8840350 - 财政年份:2013
- 资助金额:
$ 1256万 - 项目类别:
Core C: Advanced Co-Culture Engineering and Single Cell Statistics of Gut Immunology
核心C:肠道免疫学的高级共培养工程和单细胞统计
- 批准号:
8855411 - 财政年份:
- 资助金额:
$ 1256万 - 项目类别:
Core C: Advanced Co-Culture Engineering and Single Cell Statistics of Gut Immunology
核心C:肠道免疫学的高级共培养工程和单细胞统计
- 批准号:
9022402 - 财政年份:
- 资助金额:
$ 1256万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 1256万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 1256万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 1256万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 1256万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 1256万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 1256万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 1256万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 1256万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 1256万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 1256万 - 项目类别:
Research Grant














{{item.name}}会员




