Stanford Cancer Immune Monitoring and Analysis Center (CIMAC)
斯坦福癌症免疫监测与分析中心 (CIMAC)
基本信息
- 批准号:10730465
- 负责人:
- 金额:$ 183.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqBiological AssayBiological MarkersBiometryCancer CenterCancer ControlCellsClinicalClinical DataClinical TrialsCollaborationsCorrelative StudyDataData CommonsDatabasesElasticityEnsureGenomicsGrantGuidelinesImageImmuneImmunologic MonitoringImmunology procedureImmunotherapyLeadMachine LearningMalignant NeoplasmsMeasuresMiningMissionOutcomePhenotypePolysaccharidesProteomicsPublishingQuality ControlRegimenResearchSamplingSpecific qualifier valueSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStandardizationT cell receptor repertoire sequencingTechniquesTechnologyTestingWorkcancer clinical trialdata submissioninnovationmeetingsnano-stringnovelpredictive markerregression algorithmtranscriptome sequencingtranscriptomicstreatment responseworking group
项目摘要
Abstract
For this CIMAC renewal, the Stanford Cancer Immune Monitoring and Analysis Center
(CIMAC) will continue to collaborate with NCI and the CIMAC/CIDC network to identify and,
where appropriate, lead correlative studies for trials testing novel immunotherapy regimens. We
will participate in working group calls, network meetings, and coordination with clinical teams.
The Stanford CIMAC performs highly comprehensive assays of immune phenotype and
function for NCI-identified clinical trials. These will include already validated and harmonized
Tier 1 assays, validated Tier 2 assays, and newly proposed exploratory Tier 3 assays. For Tier 1
assays, we propose CyTOF, singleplex IHC, Olink, TCRseq and RNAseq. For Tier 2, we
propose single-cell TCRseq, MIBI, ATACseq, and CyTOF proteomics. For Tier 3, we propose
single-cell glycan imaging (by MALDI-ToF), spatial transcriptomics (Nanostring DSP platform),
and single-cell genomics/proteomics (Mission Bio Tapestri and BD Rhapsody platforms). We will
use longitudinal reference materials for tracking inter-batch and inter-project consistency. We
will assess quality control measures on all assays before uploading data to the Cancer Immune
Data Commons (CIDC) according to their specifications.
We will also perform biostatistical analysis of results for all assays performed, in relation to
clinical outcome data. For those trials where Stanford is the lead CIMAC, we will perform
integrative analysis across assays, using appropriate machine learning techniques and
multivariate regression algorithms such as LASSO or Elastic Net. We will work closely with the
clinical teams to obtain standardized clinical data, and to disseminate and publish results in
accordance with NCI guidelines.
摘要
对于CIMAC的更新,斯坦福大学癌症免疫监测和分析中心
(CIMAC)将继续与NCI和CIMAC/CIDC网络合作,
在适当的情况下,领导相关研究,以测试新的免疫治疗方案。我们
将参与工作组电话会议、网络会议以及与临床团队的协调。
斯坦福大学CIMAC对免疫表型进行高度全面的测定,
NCI-identified临床试验的功能。这些将包括已经验证和统一的
第1层试验、经验证的第2层试验和新拟定的探索性第3层试验。对于第1层
我们提出了CyTOF、singleplex IHC、Olink、TCRseq和RNAseq。对于Tier 2,我们
提出单细胞TCRseq、MIBI、ATACseq和CyTOF蛋白质组学。对于第3层,我们建议
单细胞聚糖成像(通过MALDI-ToF),空间转录组学(Nanostring DSP平台),
和单细胞基因组学/蛋白质组学(使命Bio Tapestri和BD Rhapsody平台)。我们将
使用纵向参考材料跟踪批次间和项目间的一致性。我们
在将数据上传到Cancer Immune之前,
数据共享(CIDC)根据其规范。
我们还将对所有试验的结果进行生物统计学分析,
临床结果数据。对于那些由斯坦福大学牵头的CIMAC试验,我们将执行
使用适当的机器学习技术,
多变量回归算法,如LASSO或弹性网络。我们将与
临床团队获得标准化的临床数据,并传播和公布结果,
符合NCI指南。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes.
- DOI:10.1038/s41592-020-01023-0
- 发表时间:2021-01
- 期刊:
- 影响因子:48
- 作者:Bannon D;Moen E;Schwartz M;Borba E;Kudo T;Greenwald N;Vijayakumar V;Chang B;Pao E;Osterman E;Graf W;Van Valen D
- 通讯作者:Van Valen D
Deep learning for cellular image analysis.
- DOI:10.1038/s41592-019-0403-1
- 发表时间:2019-12
- 期刊:
- 影响因子:48
- 作者:Moen E;Bannon D;Kudo T;Graf W;Covert M;Van Valen D
- 通讯作者:Van Valen D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Curtis Bendall其他文献
Sean Curtis Bendall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Curtis Bendall', 18)}}的其他基金
Uncoupling Age- Versus Cognitive-Related Cellular Senescence in Alzheimer's Disease
阿尔茨海默病中年龄与认知相关的细胞衰老的解耦
- 批准号:
10454751 - 财政年份:2020
- 资助金额:
$ 183.61万 - 项目类别:
Uncoupling Age- Versus Cognitive-Related Cellular Senescence in Alzheimer's Disease
阿尔茨海默病中年龄与认知相关的细胞衰老的解耦
- 批准号:
10043941 - 财政年份:2020
- 资助金额:
$ 183.61万 - 项目类别:
Uncoupling Age- Versus Cognitive-Related Cellular Senescence in Alzheimer's Disease
阿尔茨海默病中年龄与认知相关的细胞衰老的解耦
- 批准号:
10670998 - 财政年份:2020
- 资助金额:
$ 183.61万 - 项目类别:
Uncoupling Age- Versus Cognitive-Related Cellular Senescence in Alzheimer's Disease
阿尔茨海默病中年龄与认知相关的细胞衰老的解耦
- 批准号:
10222561 - 财政年份:2020
- 资助金额:
$ 183.61万 - 项目类别:
Immune Monitoring and Analysis of Cancer at Stanford (IMACS)
斯坦福大学癌症免疫监测和分析 (IMACS)
- 批准号:
9456826 - 财政年份:2017
- 资助金额:
$ 183.61万 - 项目类别:
A single-cell platform to discover and study regulators of human development
发现和研究人类发育调节因子的单细胞平台
- 批准号:
8425506 - 财政年份:2013
- 资助金额:
$ 183.61万 - 项目类别:
A single-cell platform to discover and study regulators of human development
发现和研究人类发育调节因子的单细胞平台
- 批准号:
8840350 - 财政年份:2013
- 资助金额:
$ 183.61万 - 项目类别:
Core C: Advanced Co-Culture Engineering and Single Cell Statistics of Gut Immunology
核心C:肠道免疫学的高级共培养工程和单细胞统计
- 批准号:
8855411 - 财政年份:
- 资助金额:
$ 183.61万 - 项目类别:
Core C: Advanced Co-Culture Engineering and Single Cell Statistics of Gut Immunology
核心C:肠道免疫学的高级共培养工程和单细胞统计
- 批准号:
9022402 - 财政年份:
- 资助金额:
$ 183.61万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 183.61万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 183.61万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 183.61万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 183.61万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 183.61万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 183.61万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 183.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 183.61万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 183.61万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




