A cloud-based system for scalable, privacy-preserving, and interactive immune repertoire analysis in vaccination and infection
基于云的系统,用于疫苗接种和感染方面的可扩展、隐私保护和交互式免疫库分析
基本信息
- 批准号:9557448
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-06 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAlgorithm DesignAlgorithmsAntibodiesAntibody RepertoireArchitectureAutoimmune DiseasesB-LymphocytesBasic ScienceBig DataBiomedical ComputingBiomedical ResearchCatalogingCatalogsClinicalClone CellsCloud ComputingCommunitiesCustomDataData AnalysesData AnalyticsData SecurityData SetData SourcesDevelopmentDiseaseElderlyEnvironmentFoundationsFutureGalaxyGenerationsGoalsGrantHIVHealthHeartHypersensitivityImageryImmuneImmune responseImmunizationImmunoglobulin Somatic HypermutationImmunologistIndividualInfantInfectionInfluenzaInfluenza vaccinationInformaticsIngestionInstitutional PolicyInternetInvestigationKnowledgeLengthMalariaMalignant NeoplasmsMeasuresMethodsModernizationOhioOwnershipPerformancePhasePrivacyPrivatizationProcessReceptor CellReceptors, Antigen, B-CellResearchResearch InfrastructureResearch PersonnelRunningServicesSmall Business Innovation Research GrantSoftware ToolsSolidSystemT-Cell ReceptorT-cell receptor repertoireTechnologyTestingUniversitiesUrsidae FamilyVaccinationVaccinesVariantVisualadaptive immune responseadaptive immunityaustinbasecancer cellcloud basedcohortcomputer infrastructurecomputerized data processingcostdata formatdata integrationdata sharingdeep sequencingdesigndisease diagnosisimmune healthinsightnext generation sequencingoutcome forecastparallel processingprogramsscale upskillssuccesstoolweb servicesyoung adult
项目摘要
PROJECT SUMMARY
We propose to build a cloud-based integrated solution for scalable, customizable, privacy-preserving, and
interactive antibody repertoire analysis. Immune repertoire sequencing (IR-seq) has become a useful tool in both
basic research and clinical settings. As the heart of the adaptive immunity to infection and many vaccines, the
abundance and diversity composition of the B cell receptor (BCR) and its dynamic changes in health and
diseases bear information of how to evaluate immune health, perform disease diagnosis and prognosis, and
measure vaccination effect. However, there is a computational bottleneck for large scale antibody lineage
construction, a lack of decomposable pipeline modules that preserve privacy and ownership, and a missing gap
for interactive linage analysis and visualization. In this Phase I grant, we will (1) break the bottlenecks of pipeline
processing and scale up the core algorithms to handle large sequence data sets; (2) protect private data and
proprietary processing algorithms with modularized pipeline, integrated cloud-local processing, and data
perturbation methods; 3) develop end-to-end web services for pipeline composition and interactive analysis
visualization in a cloud-based deployment solution. Existing commercial efforts are mostly focusing on cancer
related IR-seq analysis aiming to trace the disappearing of cancer cells after therapy, which solely focus on
cataloging sequence species and abundance. This kind of analysis is much simpler and easier, compared to
analyzing IR-seq data in infection and vaccination. Providing insights on host immune responses is a much more
challenging but much needed task. Once the pipeline is built, it can be readily adapted to analyze cancer IR-seq
data. Also, existing algorithms and optimizations that have been developed for other big data analysis can be
further developed and applied to the IR-seq data analysis. We will use a publically available BCR repertoire data
on an influenza vaccination cohort and a TCR repertoire data on an aging cohort to test the feasibility of the
project. The long term goal of this proposal is to build cloud based accessible and customizable services for
experts as well as non-specialists. We aim to provide an integrated solution for the ingestion, processing,
analysis, exploration and visualization, interpretation and sharing of data generated by deep sequencing of full
length antibody and TCR repertoire. The success of this Phase I SBIR will provide a solid foundation for the
product launch of a commercial cloud based solution in Phase II, during which we will continue our investigation
on big data security and privacy to facilitate compliance with institutional policies and design and develop
programmable APIs and tools to facilitate integrations with more third party modules and services.
项目总结
我们建议构建基于云的集成解决方案,以实现可扩展、可定制、隐私保护和
交互式抗体库分析。免疫谱系测序(IR-SEQ)已成为这两个领域的有用工具
基础研究和临床环境。作为对感染和许多疫苗的适应性免疫的核心,
健康人群B细胞受体(BCR)的丰度和多样性组成及其动态变化
疾病承载着如何评估免疫健康、进行疾病诊断和预后的信息,以及
衡量疫苗接种效果。然而,大规模抗体谱系的计算存在瓶颈。
结构,缺乏保护隐私和所有权的可分解管道模块,以及缺失的缺口
用于交互式线性分析和可视化。在这一阶段,我们将(1)打破管道的瓶颈
处理和扩展核心算法,以处理大型序列数据集;(2)保护私有数据和
具有模块化管道、集成的云本地处理和数据的专有处理算法
3)开发用于管道组合和交互分析的端到端Web服务
基于云的部署解决方案中的可视化。现有的商业努力大多集中在癌症上
相关的IR-SEQ分析,旨在追踪治疗后癌细胞的消失,仅专注于
编目序列、物种和丰度。与之相比,这种分析更简单、更容易
分析感染和疫苗接种的IR-SEQ数据。提供关于宿主免疫反应的见解要多得多
这是一项极具挑战性但亟需完成的任务。一旦管道建成,它就可以很容易地被改装成分析癌症的IR-SEQ
数据。此外,为其他大数据分析开发的现有算法和优化可以
进一步发展并应用于IR-SEQ数据分析。我们将使用公开提供的BCR曲目数据
关于流感疫苗接种队列和关于老龄化队列的TCR曲目数据,以测试
项目。该计划的长期目标是构建基于云的可访问和可定制的服务,
有专家也有非专家。我们的目标是为摄取、加工、
分析、探索和可视化、解释和共享Full的深度测序生成的数据
长度抗体和TCR谱系。这一阶段SBIR的成功将为
在第二阶段推出基于商业云的解决方案的产品,在此期间我们将继续调查
关于大数据安全和隐私,以促进遵守机构政策以及设计和开发
可编程API和工具,可促进与更多第三方模块和服务的集成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Xiao其他文献
Jun Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




