LFP-Driven Activity-Dependent Stimulation Techniques for Acquired Brain Injury
LFP 驱动的活动依赖性刺激技术治疗获得性脑损伤
基本信息
- 批准号:9405809
- 负责人:
- 金额:$ 6.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAlgorithmsAnimal ModelAnimalsBehaviorBehavioralBrain InjuriesBrain regionCaringChronicChronic Brain InjuryClinicalDevelopmentElectrophysiology (science)FutureGoalsInjuryInterventionKnowledgeLaboratoriesLesionLongevityMeasuresMedicalMicroelectrodesMotorMotor CortexMovementNervous system structureNeuraxisNeuronal PlasticityNeuronsOutcomePathway interactionsPatternPerformancePopulationProtocols documentationPublic HealthRattusRecoveryResearchRodentRodent ModelSensorySignal TransductionSiteSomatosensory CortexStimulusStrokeSurvivorsSystemTechniquesTestingTherapeuticTranslatingTranslationsTraumatic Brain InjuryWorkawakedesigndisabilityeffective therapyfunctional improvementfunctional restorationimprovedinnovationmicrodevicemotor function improvementmotor function recoveryneuroprosthesisnovelnovel therapeuticspatient populationrelating to nervous systemrepairedstemsuccess
项目摘要
PROJECT SUMMARY/ABSTRACT
Substantial reorganization occurs throughout spared brain regions following stroke or traumatic brain injury.
These neuroplastic mechanisms are thought to underlie functional behavioral recovery, but our understanding
of the electrophysiological activity associated with this reorganization is incomplete. Characterizing the
changes in neural activity during recovery from brain injury would allow us to better target and develop new
therapies. One such therapy that has been recently proposed is activity-dependent stimulation (ADS),
designed to artificially connect two sites within the nervous system. Our long-term goal is to understand the
mechanisms of ADS that drive functional improvements after cortical lesions in order to translate ADS
paradigms into clinical populations. The overall objective for the current project is to determine how patterns of
local field potential (LFP) signals change during recovery from brain injury, how these signals are altered
through ADS, and to determine if they can be used effectively to trigger ADS and drive behavioral recovery.
Specifically, our central hypothesis is that the movement-related spectral power and functional connectivity of
LFP signals are dysfunctional after brain injury and will be normalized after either recovery or ADS. The
rationale for the proposed research is that the LFP changes that occur after a brain injury and after single-unit
driven ADS, will be pathway-specific candidate features for LFP-triggered ADS algorithms. While single-unit
driven ADS has shown benefits in a rodent model of brain injury, success demonstrating that LFP signals can
be used to drive ADS paradigms in animal models may result in more effective translation into patient
populations due to the increased longevity of LFP-driven interfaces. We will seek to accomplish these goals
through the following specific aims: 1) identify alterations in movement-related spectral power changes and
movement-related functional connectivity that occur in LFP signals after a cortical lesion; 2) identify alterations
in movement-related spectral power changes and functional connectivity that occur after single-unit triggered
ADS in brain-injured animals; and 3) demonstrate the ability to use LFP-triggered ADS to generate changes in
functional connectivity. We will test these aims using chronic recordings in awake behaving healthy rodents,
brain-injured rodents, and brain-injured rodents undergoing an ADS protocol. Additionally, we will use chronic
LFP-driven ADS paradigms to determine if these algorithms can alter cortical functional connectivity. This
project is innovative because it proposes a new paradigm positing that LFP signal components have the fidelity
to be used to trigger activity-dependent stimulation protocols altering cortical connectivity. Furthermore, this
project is significant because it will generate a greater understanding of the dynamics of neural activity
associated with motor behavior after a brain injury and with recovery of motor function.
项目总结/摘要
在中风或创伤性脑损伤后,整个备用脑区域都发生了实质性的重组。
这些神经可塑性机制被认为是功能性行为恢复的基础,但我们的理解
与这种重组相关的电生理活动是不完整的。表征
脑损伤恢复期间神经活动的变化将使我们能够更好地瞄准和开发新的
治疗最近提出的一种这样的疗法是活动依赖性刺激(ADS),
人工连接神经系统内的两个部位我们的长期目标是了解
ADS的机制,驱动皮质病变后的功能改善,以翻译ADS
应用到临床人群中。本项目的总体目标是确定
局部场电位(LFP)信号在脑损伤恢复过程中发生变化,这些信号是如何改变的
通过ADS,并确定它们是否可以有效地用于触发ADS和驱动行为恢复。
具体来说,我们的中心假设是,运动相关的光谱功率和功能连接的
LFP信号在脑损伤后功能障碍,并且在恢复或ADS后将正常化。的
拟议研究的基本原理是,脑损伤后和单一单位后发生的LFP变化
驱动的ADS,将是特定于路径的候选特征,用于LFP触发的ADS算法。当单个单元
驱动的ADS已在啮齿动物脑损伤模型中显示出益处,成功证明LFP信号可以
用于在动物模型中驱动ADS范例可能会导致更有效地转化为患者
由于LFP驱动接口的寿命增加,我们将努力实现这些目标
通过以下具体目的:1)识别与运动相关的光谱功率变化的改变,
皮质损伤后LFP信号中发生的运动相关功能连接; 2)识别改变
在与运动相关的频谱功率变化和功能连接中,
在脑损伤动物中的ADS;和3)证明使用LFP触发的ADS产生脑损伤动物中的变化的能力。
功能性连接。我们将使用清醒行为的健康啮齿动物的长期记录来测试这些目标,
脑损伤的啮齿类动物和经历ADS方案的脑损伤的啮齿类动物。此外,我们将使用慢性
LFP驱动的ADS范例,以确定这些算法是否可以改变皮质功能连接。这
该项目是创新的,因为它提出了一个新的范式,假定LFP信号分量具有保真度
用于触发活动依赖性刺激协议,改变皮层连接。而且这
这个项目意义重大,因为它将使我们对神经活动的动力学有更深入的了解
与脑损伤后的运动行为和运动功能的恢复相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Thomas Bundy其他文献
David Thomas Bundy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Research Grant














{{item.name}}会员




