Intravascular Chemical Sensors with Improved Biocompatiblity/Performance via Nitric Oxide Release
通过一氧化氮释放改善生物相容性/性能的血管内化学传感器
基本信息
- 批准号:9525342
- 负责人:
- 金额:$ 39.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-21 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAnti-inflammatoryArteriesBacteriaBindingBloodBlood CirculationBlood PlateletsBlood VesselsBlood gasBlood specimenCD47 geneCathetersCell AdhesionCellsChemicalsChemistryClinicalCritical CareCritical IllnessDetectionDevicesElectrolytesEndotheliumEnzymesExhibitsExposure toFamily suidaeFoundationsGenerationsGlucoseGoalsGrantHospitalsHourHumanHydrogen PeroxideImmobilizationImmuneImplantIn SituIn VitroInfectionInfection preventionInflammatoryInflammatory ResponseIntegral Membrane ProteinIntensive CareIntensive Care UnitsMeasurementMeasuresMicrobial BiofilmsMonitorNitric OxideOxygenPatient CarePatientsPediatric HospitalsPenicillaminePerformancePhasePhiladelphiaPhysiologicalPlatelet ActivationPolymersPolyurethanesProductionPropertyProteinsReceptor SignalingRecombinantsResearchResearch SupportRiskS-NitrosothiolsSHPS-1 proteinSheepSideSiliconesSolventsSterilizationSurfaceSwellingTechnologyTemperatureTestingThrombusTimeToxic effectTranslatingTranslationsUnited States National Institutes of HealthVeinsWorkanimal dataantimicrobialawakebactericidebiomaterial compatibilityclinical practicecostexperimental studyglucose sensorhealth care qualityhigh riskimplantable deviceimplanted sensorimprovedin vivoinnovationmacrophageminiaturizeneutrophilnovelpreventreal time monitoringreceptorresponsescaffoldscreeningsensorsensor technologysuccess
项目摘要
ABSTRACT
To date, efforts to develop clinically viable in vivo chemical sensors for real-time monitoring of blood gases,
electrolytes, glucose, lactate, etc. in critically ill hospital patients have been stymied by inaccurate analytical
results due to sensor biocompatibility problems (cell adhesion, thrombus formation, etc.) and a high risk of
infection. Our research over the past 15 years has been to explore and optimize the chemistry required to
fabricate in vivo chemical sensors that slowly release low levels of nitric oxide (NO). The local release of NO
mimics the chemistry that occurs at the inner walls of all healthy blood vessels (NO production by endothelium)
and by immune cells (macrophages, neutrophils) and is expected to greatly enhance the biocompatibility and
bactericidal properties of the intravascular sensors. This will lead to improved analytical performance of the
implanted sensors and less risk of infection. Indeed, results obtained with prior NIH support have clearly
demonstrated that in situ release of NO significantly reduces surface thrombus formation and improves the in
vivo analytical accuracy of intravascular oxygen and glucose sensors. Very recently, a completely new type of
NO releasing polymer material (S-nitrosothiol (RSNO) impregnated catheter tubing) has been developed that
possesses highly desirable long-term shelf stability, long-term NO release, ease of sterilization with ETO, and
low toxicity. We now wish to utilize this simple and low cost NO release chemistry to implement a new phase
of research that we anticipate will lead to translation of this technology to real-time sensor technology for the
intensive care units (ICU) at the end of the proposed 4-year project period. Our primary goal will be to assess
whether these new materials can be readily used to fabricate catheter type electrochemical sensors (for
oxygen, glucose, and lactate) that exhibit greatly enhanced in vivo analytical performance (in pigs and sheep).
In addition to NO release, we will also explore the potential advantages of combining the new RSNO-
impregnation chemistry with immobilized CD47 on the surface of the sensors. CD47 is a potent anti-
inflammatory/anti-platelet activation agent that binds to the SIRPα receptor on surfaces of many inflammatory
cells, including platelets. Optimal NO release and combined NO release/CD47 modified sensors for monitoring
oxygen (PO2), glucose, and lactate will first be evaluated side-by-side (vs. corresponding non-NO release
controls) in vivo within arteries and veins of anesthetized pigs (over 24 h period). The most promising
approach derived from this initial screening will then be tested in fully awake sheep over 10 d periods to prove
the enhanced analytical performance resulting from the antithrombotic/antimicrobial properties of this new
generation of implantable electrochemical sensors. The ability to reliably measure critical care analytes in
blood continuously at a patient's bedside is the “holy grail” for biomedical sensor technology, and this goal can
only be achieved when sensor performance is not compromised by biocompatibility and infection issues.
抽象的
迄今为止,努力开发临床上可行的体内化学传感器以实时监测血液,
电解质,葡萄糖,裂缝等。病重患者患者因分析不准确而受阻
结果是由于传感器生物相容性问题(细胞粘合剂,血栓形成等)以及高风险
感染。在过去的15年中,我们的研究是探索和优化所需的化学反应
制造体内化学传感器,缓慢释放低水平的一氧化氮(NO)。本地版本否
模仿所有健康血管内壁发生的化学(无内皮产生)
并通过免疫细胞(巨噬细胞,中性粒细胞),并有望大大提高生物相容性和
血管内传感器的杀菌特性。这将导致改善的分析性能
植入传感器和感染风险较小。实际上,先前的NIH支持获得的结果显然具有
证明原位释放无明显地减少表面血栓形成并改善IN
血管内氧和葡萄糖传感器的体内分析精度。最近,一种全新的类型
尚未开发出释放聚合物材料(S-硝基硫醇(RSNO)浸渍导管管)
具有高度理想的长期货架稳定性,长期无释放,用ETO进行灭菌和
低毒性。我们现在希望利用这种简单而低成本的没有释放化学来实施新阶段
我们期望的研究将导致该技术转化为实时传感器技术
在拟议的4年项目期结束时,重症监护病房(ICU)。我们的主要目标是评估
这些新材料是否可以轻易用于制造导管型电化学传感器(用于
氧气,葡萄糖和乳酸)暴露了体内分析性能非常增强(在猪和绵羊中)。
除了没有释放外,我们还将探讨将新的rsno-合并的潜在优势
在传感器表面上用固定的CD47浸渍化学。 CD47是一种潜在的抗
在许多炎症表面上与SIRPα受体结合的炎症/抗血小板激活剂
细胞,包括血小板。最佳无释放,并组合无版本/CD47修改传感器进行监视
氧(PO2),葡萄糖和葡萄酸盐将首先并排评估(相对于相应的非释放
对照)在麻醉猪的动脉和静脉内体内(在24小时内)。最有前途的
然后,将在10 d期间完全清醒的绵羊中测试此初始筛查的方法,以证明
该新的抗重蛋/抗菌特性产生的分析性能增强
产生可植入的电化学传感器。可靠测量重症监护分析物的能力
在患者的床边连续血液是生物医学传感器技术的“圣杯”,这个目标可以
仅当没有因生物相容性和感染问题而损害传感器性能时才能实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK E MEYERHOFF其他文献
MARK E MEYERHOFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK E MEYERHOFF', 18)}}的其他基金
Advanced Thromboresistant/Bactericidal Catheters via Electromodulated NO Release
通过电调节 NO 释放的先进抗血栓/杀菌导管
- 批准号:
9405609 - 财政年份:2017
- 资助金额:
$ 39.47万 - 项目类别:
Amperometric NO(g) Sensors with Improved Selectivity/Sensitivity for Biomedical Measurements
用于生物医学测量的具有更高选择性/灵敏度的电流型 NO(g) 传感器
- 批准号:
9068096 - 财政年份:2015
- 资助金额:
$ 39.47万 - 项目类别:
Amperometric NO(g) Sensors with Improved Selectivity/Sensitivity for Biomedical Measurements
用于生物医学测量的具有更高选择性/灵敏度的电流型 NO(g) 传感器
- 批准号:
8967508 - 财政年份:2015
- 资助金额:
$ 39.47万 - 项目类别:
Advanced Thromboresistant/Bactericidal Catheters via Electromodulated NO Release
通过电调节 NO 释放的先进抗血栓/杀菌导管
- 批准号:
8916211 - 财政年份:2014
- 资助金额:
$ 39.47万 - 项目类别:
Reducing Tunneled Dialysis Catheter Dysfunction through Nitric Oxide Release
通过释放一氧化氮减少隧道式透析导管功能障碍
- 批准号:
9188634 - 财政年份:2013
- 资助金额:
$ 39.47万 - 项目类别:
Reducing Tunneled Dialysis Catheter Dysfunction through Nitric Oxide Release
通过释放一氧化氮减少隧道式透析导管功能障碍
- 批准号:
8741962 - 财政年份:2013
- 资助金额:
$ 39.47万 - 项目类别:
Reducing Tunneled Dialysis Catheter Dysfunction through Nitric Oxide Release
通过释放一氧化氮减少隧道式透析导管功能障碍
- 批准号:
8638515 - 财政年份:2013
- 资助金额:
$ 39.47万 - 项目类别:
Thromboresistant Polymers Via Catalytic Generation of NO
通过催化生成 NO 的抗血栓聚合物
- 批准号:
7644722 - 财政年份:2005
- 资助金额:
$ 39.47万 - 项目类别:
Thromboresistant Polymers via Catalytic Generation of NO
通过催化生成 NO 的抗血栓聚合物
- 批准号:
7407496 - 财政年份:2005
- 资助金额:
$ 39.47万 - 项目类别:
Thromboresistant Polymers Via Catalytic Generation of NO
通过催化生成 NO 的抗血栓聚合物
- 批准号:
8241135 - 财政年份:2005
- 资助金额:
$ 39.47万 - 项目类别:
相似国自然基金
多孔Ti-MSNs@MGF+DX抗炎—成肌体系应用于颞下颌关节假体的作用和机制研究
- 批准号:82370984
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于仿生矿化法构建氢离子捕获的炎症调节性水凝胶微球在卒中治疗中的研究
- 批准号:82372120
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
“消炎良境”铂药纳米制剂增强免疫治疗转移性结直肠癌的研究
- 批准号:82073398
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
面向水中非甾体类消炎药选择性吸附光催化分解的金属有机框架的设计与机理研究
- 批准号:21906007
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting the Proinflammatory Activity of Integrin Mac-1 for Treatment of Atherosclerosis
靶向整合素 Mac-1 的促炎活性治疗动脉粥样硬化
- 批准号:
10376780 - 财政年份:2019
- 资助金额:
$ 39.47万 - 项目类别:
Role of flow-sensitive KLK10 in endothelial dysfunction and atherosclerosis
流量敏感的 KLK10 在内皮功能障碍和动脉粥样硬化中的作用
- 批准号:
10210428 - 财政年份:2018
- 资助金额:
$ 39.47万 - 项目类别:
Increasing biocompatibility of stents via CD47 surface functionalization: Mechanistic and Preclinical studies
通过 CD47 表面功能化提高支架的生物相容性:机理和临床前研究
- 批准号:
9565589 - 财政年份:2017
- 资助金额:
$ 39.47万 - 项目类别:
Increasing biocompatibility of stents via CD47 surface functionalization: Mechanistic and Preclinical studies
通过 CD47 表面功能化提高支架的生物相容性:机理和临床前研究
- 批准号:
9448802 - 财政年份:2017
- 资助金额:
$ 39.47万 - 项目类别:
Targeting Pathogenic Endothelial Dysfunction in Lupus Nephritis
针对狼疮性肾炎的致病性内皮功能障碍
- 批准号:
10487863 - 财政年份:2016
- 资助金额:
$ 39.47万 - 项目类别: