Advanced Thromboresistant/Bactericidal Catheters via Electromodulated NO Release
通过电调节 NO 释放的先进抗血栓/杀菌导管
基本信息
- 批准号:8916211
- 负责人:
- 金额:$ 55.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAcuteAdhesionsAnimal ModelAnimalsAnti-Bacterial AgentsApplications GrantsBacterial InfectionsBandageBlood PlateletsBlood-Borne PathogensCaliberCathetersChemiluminescence assayChemistryChronicClinicalCoagulation ProcessComplexCopperDataDevelopmentDevicesDiffuseElectrochemistryElectrodesElectronsElementsEndotheliumEnzymesEpithelial CellsEvaluationExhibitsExtracorporeal CirculationFrequenciesGenerationsGoalsHealthHourIn VitroInfectionIonsKlebsiella pneumonia bacteriumLeadLengthLigandsLongitudinal StudiesMarketingMediatingMethodsMicrobial BiofilmsMicroprocessorModelingNitric OxideNitric Oxide DonorsNitrite ReductaseNitritesNoseOryctolagus cuniculusPhysiologic pulsePlatelet ActivationPolymersPreventionPropertyPseudomonas aeruginosaResearchRiskS-NitrosothiolsSepsisShippingShipsSilicone ElastomersSiteSodium ChlorideSolutionsStaphylococcus aureusSurfaceTechnologyTemperatureTestingThrombosisThrombusTimeVascular GraftVeinsWorkWound Healingantimicrobialantimicrobial drugbactericidecatheter related infectioncommercial applicationcostdiazeniumdiolatein vivokillingsmacrophageminiaturizenew technologynovelnovel strategiespreventresearch studysensorsimulationsuccessurinaryvoltage
项目摘要
DESCRIPTION (provided by applicant): Nitric oxide (NO) secretion by the normal endothelium inhibits clotting by preventing platelet activation and adhesion. Nitric oxide is also a potent antimicrobial agent and is capable of preventing/dispersing biofilms. Over the past decade, several groups, including ours, have developed novel materials that continuously secrete NO from various NO donors (S-nitrosothiols and diazeniumdiolates) embedded within polymers to prevent platelet adhesion, thrombosis and microbial biofilm formation on the surface of a number of biomedical devices (e.g., intravascular catheters/sensors, extracorporeal circulation loops, etc.) and wound healing bandages. However, to date, there have not been any commercial applications of this technology owing to the high cost of preparing and shipping commodity devices (e.g., catheters, bandages, etc.) made with the fragile NO donors species, which are sensitive to moisture and increased temperature. To overcome this hurdle, we now propose a completely new, low cost and robust method to create a new generation of thromboresistant/bactericidal intravascular and urinary catheters, as well as other biomedical devices, via use of electrochemically modulated NO release from an inner reservoir of simple inorganic nitrite salt. One approach relies on electrochemically reducing the stable nitrite ions via electrochemical generation of transient Cu(I) ions from a metallic copper wire electrode that reduce nitrite to NO. Alternatively, we will also explore the use of soluble Cu(II)-ligand complexes that mimic the active Cu(II/I) site of nitrite reductase enzymes. These complexes can be electrochemically reduced to Cu(I) complexes that further mediate the reduction of nitrite to NO. Preliminary data already demonstrate the ability of electrochemical NO release catheters to prevent and/or disperse microbial biofilm formation in vitro and also dramatically decrease thrombus formation in vivo. Further optimization of the electrochemistry will enable detailed in vitro studies on the antimicrobial activity of the basic technology. Additionally, it will allow shrt- term (8 h) and long-term (7 and 30 d) studies of the new electrochemical NO release catheters within the veins of rabbits with the goal of evaluating the efficacy of these devices in preventing
thrombosis and microbial biofilm formation in vivo. Miniaturized battery powered circuitry will be developed to aid in the longer-term studies in freely moving animals. Success of this project could lead to a new generation of low- cost catheters (both intravascular and urinary) that will dramatically reduce risk of common catheter related infections and thrombosis, and it may also provide a novel technology for creating planar NO release patches that can readily employed to promote wound healing.
说明(申请人提供):正常内皮细胞分泌的一氧化氮(NO)通过阻止血小板激活和黏附来抑制凝血。一氧化氮也是一种有效的抗菌剂,能够防止/分散生物膜。在过去的十年里,包括我们在内的几个小组已经开发出新型材料,这种材料可以持续地从嵌入在聚合物中的各种NO供体(S-亚硝硫醇和二氮杂二醇)中分泌NO,以防止血小板黏附、血栓形成和许多生物医学设备(例如血管内导管/传感器、体外循环回路等)表面的微生物生物膜形成。和伤口愈合绷带。然而,到目前为止,由于准备和运输商品设备(如导管、绷带等)的成本很高,这项技术还没有任何商业应用。由易碎的无供体物种制成,它们对湿度和温度上升很敏感。为了克服这一障碍,我们现在提出了一种全新的、低成本和强大的方法来创造新一代抗血栓/杀菌血管内和尿管,以及其他生物医学装置,通过使用电化学调节的NO从简单的无机亚硝酸盐的内部储存库释放。一种方法依赖于电化学还原稳定的亚硝酸根离子,方法是在金属铜线电极上电化学产生瞬时的铜(I)离子,将亚硝酸根还原为NO。或者,我们还将探索使用可溶的铜(II)-配体络合物来模拟亚硝酸盐还原酶的活性铜(II/I)位置。这些络合物可以被电化学还原为铜(I)络合物,进一步催化亚硝酸根还原为NO。初步数据已经证明,电化学NO释放导管在体外能够防止和/或分散微生物生物膜的形成,并显著减少体内血栓的形成。电化学的进一步优化将使对基础技术的抗微生物活性的详细体外研究成为可能。此外,它还将允许在兔的静脉内对新的电化学NO释放导管进行短期(8小时)和长期(7天和30天)的研究,目的是评估这些装置在预防
体内血栓形成和微生物生物膜形成。微型电池供电的电路将被开发出来,以帮助在自由活动的动物身上进行长期研究。该项目的成功可能导致新一代低成本导管(包括血管内和尿路),将极大地降低常见导管相关感染和血栓形成的风险,并可能提供一种新的技术,用于制造平面NO释放贴片,易于用于促进伤口愈合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK E MEYERHOFF其他文献
MARK E MEYERHOFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK E MEYERHOFF', 18)}}的其他基金
Advanced Thromboresistant/Bactericidal Catheters via Electromodulated NO Release
通过电调节 NO 释放的先进抗血栓/杀菌导管
- 批准号:
9405609 - 财政年份:2017
- 资助金额:
$ 55.39万 - 项目类别:
Intravascular Chemical Sensors with Improved Biocompatiblity/Performance via Nitric Oxide Release
通过一氧化氮释放改善生物相容性/性能的血管内化学传感器
- 批准号:
9525342 - 财政年份:2016
- 资助金额:
$ 55.39万 - 项目类别:
Amperometric NO(g) Sensors with Improved Selectivity/Sensitivity for Biomedical Measurements
用于生物医学测量的具有更高选择性/灵敏度的电流型 NO(g) 传感器
- 批准号:
9068096 - 财政年份:2015
- 资助金额:
$ 55.39万 - 项目类别:
Amperometric NO(g) Sensors with Improved Selectivity/Sensitivity for Biomedical Measurements
用于生物医学测量的具有更高选择性/灵敏度的电流型 NO(g) 传感器
- 批准号:
8967508 - 财政年份:2015
- 资助金额:
$ 55.39万 - 项目类别:
Reducing Tunneled Dialysis Catheter Dysfunction through Nitric Oxide Release
通过释放一氧化氮减少隧道式透析导管功能障碍
- 批准号:
9188634 - 财政年份:2013
- 资助金额:
$ 55.39万 - 项目类别:
Reducing Tunneled Dialysis Catheter Dysfunction through Nitric Oxide Release
通过释放一氧化氮减少隧道式透析导管功能障碍
- 批准号:
8741962 - 财政年份:2013
- 资助金额:
$ 55.39万 - 项目类别:
Reducing Tunneled Dialysis Catheter Dysfunction through Nitric Oxide Release
通过释放一氧化氮减少隧道式透析导管功能障碍
- 批准号:
8638515 - 财政年份:2013
- 资助金额:
$ 55.39万 - 项目类别:
Thromboresistant Polymers Via Catalytic Generation of NO
通过催化生成 NO 的抗血栓聚合物
- 批准号:
7644722 - 财政年份:2005
- 资助金额:
$ 55.39万 - 项目类别:
Thromboresistant Polymers via Catalytic Generation of NO
通过催化生成 NO 的抗血栓聚合物
- 批准号:
7407496 - 财政年份:2005
- 资助金额:
$ 55.39万 - 项目类别:
Thromboresistant Polymers Via Catalytic Generation of NO
通过催化生成 NO 的抗血栓聚合物
- 批准号:
8241135 - 财政年份:2005
- 资助金额:
$ 55.39万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 55.39万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 55.39万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 55.39万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 55.39万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 55.39万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 55.39万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 55.39万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 55.39万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 55.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 55.39万 - 项目类别:
Operating Grants














{{item.name}}会员




