Mechanisms for Stress-Induced Transcriptional Reprogramming via Anti-Adaptors
通过反适配器进行应激诱导转录重编程的机制
基本信息
- 批准号:9229317
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAnti-Bacterial AgentsAntibioticsBacteriaBacteria sigma factor KatF proteinBehaviorBindingBinding SitesBiochemistryBiocideBiological AssayCellsCommunitiesComplementComplexCryoelectron MicroscopyCuesDNA DamageDNA-Directed RNA PolymeraseDesiccationDevelopmentEnvironmentEscherichia coliGammaproteobacteriaGenesGenetic TranscriptionGenomeHumanIn VitroIndividualInfectionKnowledgeLaboratoriesMagnesiumMediatingMetalsMethodsMicrobial BiofilmsMicroscopyMolecular ConformationMolecular GeneticsMolecular StructureMolecular WeightNutrientOxidative StressPathway interactionsPhagocytosisPhasePhosphorylationPlantsPlayProcessProtein FamilyProteinsProteolysisRegulationRegulonReportingResearch PersonnelResolutionRoleSequence HomologySignal TransductionStarvationStressStructural ModelsStructureSystemTestingUbiquitinUp-RegulationVirulenceVirulence FactorsWorkX-Ray Crystallographyantimicrobialbiological adaptation to stressbiological systemsbiophysical techniquescombatin vivoinhibitor/antagonistinorganic phosphateinsightlogarithmmulticatalytic endopeptidase complexnovelparticlepathogenpromoterprotein protein interactionresponsestructural biologytoxic metal
项目摘要
PROJECT SUMMARY
The dissociable promoter recognition subunit RpoS (also known as σs) is the master transcriptional regulator of
the general stress response in γ-proteobacteria, and plays key roles in the virulence of many pathogens,
including human, plant and animal pathogens. Under certain conditions, such as at the transition from the
logarithmic to the stationary phase or in the presence of stress signals, RpoS redirects the core RNA
polymerase machinery to a subset of promoters to reprogram transcription. However, intracellular RpoS levels
are not steady – they are low in actively dividing cells, and substantially increased upon entering the stationary
phase or upon encountering stress. To achieve proper regulation, there is tight control over RpoS levels, with
the major point of regulation occurring at the level of RpoS proteolysis by the ATP-dependent ClpXP machine.
Our central focus is to understand the mechanisms of RpoS proteolysis by ClpXP as well as its regulation by
an emerging family of proteins collectively called anti-adaptors. In order to be degraded, RpoS is presented to
ClpXP by a unique, highly specific adaptor called RssB, which acts catalytically, without being degraded. In
turn, RssB itself is regulated by interactions with stress-specific anti-adaptors. Our work will focus on the
structure and function of three-anti-adaptors: IraD (induced by oxidative stress and DNA damage), IraM
(induced by magnesium starvation) and IraP (induced by phosphate starvation). These anti-adaptors share no
sequence homology, and only weak homology with protein of known structure, warranting a structural biology
effort aimed at deciphering the underlying mechanisms of RssB recognition. We will determine the structures
of IraD, IraM and IraP, both in isolation and bound to RssB using X-ray crystallography. This will allow us to
pinpoint, at atomic resolution, residues important for anti-adaptor/RssB interactions, and also regulation of the
anti-adaptors themselves by oligomerization. We will complement these structural studies with molecular
genetics, microscopy and functional assays for protein-protein interactions and RpoS degradation, which will
allow us to correlate in vitro behavior with in vivo observations. We will also determine structures of a RpoS-
RssB-ClpXP assembly using cutting-edge methods in electron cryo-microscopy, which will allow us to
understand the RpoS and RssB conformational dynamics at the core of this paradigmatic mode of regulated
proteolysis in bacteria. Overall, this work will not only bring fundamental, mechanistic insights, but will also
open the way to the development of novel antibacterials that could target ClpXP directly, or, adaptor/anti-
adaptor interfaces. The RpoS regulon has been reported to comprise up to 10% of the Escherichia coli
genome, and RpoS itself plays important roles in bacterial persistence, host-pathogen interactions and biofilm
formation, which underlie 80% of all infections.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra M. Deaconescu其他文献
RNA polymerase between lesion bypass and DNA repair
- DOI:
10.1007/s00018-013-1384-3 - 发表时间:
2013-06-27 - 期刊:
- 影响因子:6.200
- 作者:
Alexandra M. Deaconescu - 通讯作者:
Alexandra M. Deaconescu
Starting Actin Filaments Anew - Adenomatous Polyposis Coli Is an Actin Nucleator
- DOI:
10.1016/j.bpj.2008.12.552 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Kyoko Okada;Alexandra M. Deaconescu;James B. Moseley;Zvonimir Dogic;Nikolaus Grigorieff;Bruce L. Goode - 通讯作者:
Bruce L. Goode
MFD Dynamically Regulates Transcription
- DOI:
10.1016/j.bpj.2017.11.1377 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Tung T. Le;Yi Yang;Chuang Tan;Margaret Suhanovsky;Robert M. Fulbright;James T. Inman;Ming Li;Jaeyoon Lee;Jeffrey W. Roberts;Alexandra M. Deaconescu;Michelle D. Wang - 通讯作者:
Michelle D. Wang
Alexandra M. Deaconescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra M. Deaconescu', 18)}}的其他基金
MECHANISMS AND MACROMOLECULAR INTERACTIONS UNDERLYING CELLULAR RESPONSES TO STRESS SIGNALS
细胞对应激信号反应的机制和大分子相互作用
- 批准号:
10570860 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
MECHANISMS AND MACROMOLECULAR INTERACTIONS UNDERLYING CELLULAR RESPONSES TO STRESS SIGNALS
细胞对应激信号反应的机制和大分子相互作用
- 批准号:
10330653 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
相似海外基金
New technologies for targeted delivery of anti-bacterial agents
抗菌药物靶向递送新技术
- 批准号:
1654774 - 财政年份:2015
- 资助金额:
$ 31.5万 - 项目类别:
Studentship
Targeting bacterial phosphatases for novel anti-bacterial agents.
针对细菌磷酸酶的新型抗菌剂。
- 批准号:
8416313 - 财政年份:2012
- 资助金额:
$ 31.5万 - 项目类别:
Targeting bacterial phosphatases for novel anti-bacterial agents.
针对细菌磷酸酶的新型抗菌剂。
- 批准号:
8298885 - 财政年份:2012
- 资助金额:
$ 31.5万 - 项目类别:














{{item.name}}会员




