Evaluating a Risk Prediction Model for Lung Cancer
评估肺癌风险预测模型
基本信息
- 批准号:9271910
- 负责人:
- 金额:$ 19.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-15 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAddressAdultAdvisory CommitteesAgeAwardBenignBiometryBody mass indexCaliforniaCancer ControlCancer DetectionCancer EtiologyCancer FamilyChronic Obstructive Airway DiseaseCigaretteClinicalCohort AnalysisColorectalCommunitiesComplexCustomDataDecision AidDecision MakingDiagnosisDiscriminationDoctor of PhilosophyEarly DiagnosisEducationElectronic Health RecordEligibility DeterminationEnrollmentEnvironmentFamily history ofFunctional disorderGenesGeneticGenotypeGoalsGuidelinesHealthHealth SurveysImageIndividualIntegrated Delivery of Health CareInterventionK-Series Research Career ProgramsKnowledgeLeadLeadershipLungLung noduleMalignant - descriptorMalignant neoplasm of lungMedicalMentorsMentorshipModelingOvarianPerformancePersonsPopulationPositioning AttributePractice ManagementPreventive serviceProbabilityProfessional OrganizationsProstateProstate, Lung, Colorectal, and Ovarian Cancer Screening TrialRaceRadiation exposureRecording of previous eventsResearchResearch ActivityResourcesRiskScreening for cancerSkin CarcinomaSmokerSmokingSmoking HistorySmoking StatusSubgroupSurveysSystemTimeTrainingTraining ActivityTranslatingUnnecessary ProceduresWorkagedarmbasebiomedical informaticscancer diagnosiscancer epidemiologycareerclinical practiceclinical predictorsclinically relevantcohortcost efficientethnic diversityexperiencefollow-upgenetic epidemiologyhigh riskimprovedlow-dose spiral CTlung cancer screeningmeetingsmembermortalitypredictive modelingprogramspublic health relevancescreeningskillssmoking cessationsurveillance strategytranslational scientisttumorwhole genome
项目摘要
DESCRIPTION (provided by applicant): This Career Development Award will support Lori Sakoda, PhD, in her transition to independence as a translational researcher in lung cancer. Her long-term career goal is to inform and improve real-world strategies for lung cancer detection and control by leading transdisciplinary research that integrates analysis of complex, large-scale biomedical data. Risk prediction models could be valuably employed to optimize the benefit-to-harm ratio of screening strategies for lung cancer in smokers. To support their use in clinical practice, however, there must be convincing evidence of their predictive ability to identify smokers at highest risk for lung cancer and/or to differentiate those presenting with malignant versus benign lung nodules. Her mentored research will evaluate whether a newly developed, clinically-oriented risk prediction model for lung cancer, as proposed or modified, could aid decision-making in the context of lung cancer screening. The specific aims are to 1) validate the predictive performance of the model; 2) determine the incremental value of adding genetic and other clinical predictors to the model; and 3) examine the predictive performance of the baseline model and the best predictive extended model in persons who meet the U.S. Preventative Services Task Force eligibility criteria for lung cancer screening with low-dose computed tomography. As an exploratory aim, the predictive performance of these same two models will be assessed in the subgroup of screening- eligible persons diagnosed incidentally with lung nodules. These aims will be addressed by integrating survey, whole genome genotyping, and electronic health record (EHR) data on a large, contemporary cohort of smokers in the Kaiser Permanente Northern California (KPNC) Research Program on Genes, Environment, and Health. The proposal builds on the candidate's prior training in cancer epidemiology to fill knowledge gaps in clinical domains (lung pathophysiology, lung cancer detection and management practices, and medical decision-making) and scientific domains pertinent to integrated analysis of EHR and other complex, large-scale data (biostatistics, genetic epidemiology, and biomedical informatics), which will allow her to more effectively generate and translate scientific evidence into clinical practice. Training will be acquired from coursework, seminars, professional society meetings, and experiential learning, under the guidance of a highly qualified team of mentors and scientific advisors. She will also build clinical and scientifc partnerships essential to succeed in her current setting. The KPNC Division of Research is an ideal training environment, given its long history of important contributions to cancer screening guidelines, due to both its scientific leadership and its access to an ethnically diverse and stabl membership (currently over three million adults) for whom EHR data are kept indefinitely. The proposed plan will provide the candidate with preliminary data to develop a competitive R01 proposal, along with specialized knowledge and skills to successfully establish a transdisciplinary research program focused on optimizing strategies for lung cancer detection and control.
描述(由适用提供):该职业发展奖将支持洛里·萨科达(Lori Sakoda,Phd),在其过渡到独立性的肺癌研究人员中。她的长期职业目标是通过领先的跨学科研究来告知和改善现实世界中的肺癌检测和控制策略,以整合复杂的大规模生物医学数据的分析。风险预测模型可以非常有价值地用于优化吸烟者肺癌筛查策略的收益与损害比率。但是,为了支持它们在临床实践中的使用,必须有令人信服的证据表明,他们的预测能力可以鉴定出肺癌最高风险的吸烟者和/或与伴有恶性肿瘤与良性肺结节的吸烟者区分开来。她的指导研究将评估新开发的,面向临床的,临床上的风险预测模型,该模型(如拟议中的或修改)是否可以在肺癌筛查的背景下有助于决策。具体目的是1)验证模型的预测性能; 2)确定向模型添加遗传和其他临床预测因子的增量值; 3)检查基线模型的预测性能以及符合美国预防服务工作队资格筛查的人的最佳预测性扩展模型,该标准使用低剂量计算机层析成像进行肺癌筛查。作为探索目的,将在偶然地用肺结诊断出的筛查人员的子组中评估这两个模型的预测性能。这些目标将通过整合调查,整个基因组基因分型和电子健康记录(EHR)数据(EHR)数据,该数据在北加州Kaiser Permanente(KPNC)基因,环境和健康研究计划中的大型现代吸烟者中。该提议建立在候选人在癌症流行病学上的先前培训的基础上,以填补临床领域的知识空白(肺病理生理学,肺癌的检测和管理实践以及医疗决策)以及与EHR和其他复杂的,大规模数据的综合分析相关的科学领域(生物统计学,遗传性疾病,遗传性增长和生物学效率),这将允许更多的效果,并允许更多地构成。进入临床实践。在高素质的导师和科学顾问团队的指导下,将从课程,半手赛,专业社会会议和经验丰富的学习中获得培训。她还将建立在当前环境中取得成功的临床和科学伙伴关系。 KPNC研究部是一个理想的培训环境,鉴于其对癌症筛查指南的重要贡献的悠久历史,由于其科学领导层及其获得了富有的养殖潜水员和Stabl会员资格(目前超过300万成人),因此EHR数据无限期地保存。拟议的计划将为候选人提供初步数据,以开发有竞争力的R01提案,并提供专门的知识和技能,以成功建立跨学科研究计划,旨在优化用于肺癌检测和控制策略的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lori Sakoda其他文献
Lori Sakoda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lori Sakoda', 18)}}的其他基金
Multilevel Determinants of Racial/Ethnic Disparities in Lung Cancer Screening Utilization
肺癌筛查利用中种族/民族差异的多层次决定因素
- 批准号:
10443477 - 财政年份:2022
- 资助金额:
$ 19.27万 - 项目类别:
Multilevel Determinants of Racial/Ethnic Disparities in Lung Cancer Screening Utilization
肺癌筛查利用中种族/民族差异的多层次决定因素
- 批准号:
10640224 - 财政年份:2022
- 资助金额:
$ 19.27万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mentoring the next generation of trainees in patient-oriented, community engaged research in obesity and health equity
指导下一代学员进行以患者为中心、社区参与的肥胖和健康公平研究
- 批准号:
10662072 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别:
Development and implementation of a digital sleep intervention for preschoolers in foster care
为寄养中的学龄前儿童开发和实施数字睡眠干预
- 批准号:
10724304 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别:
Neural Mechanisms Promoting Biased Social Memories in Intergenerational Childhood Abuse
代际童年虐待中促进偏见社会记忆的神经机制
- 批准号:
10749383 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别: