CorBand: A novel wearable wrist sensor for heart failure remote monitoring
CorBand:一种用于心力衰竭远程监测的新型可穿戴腕式传感器
基本信息
- 批准号:9335418
- 负责人:
- 金额:$ 49.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmbulatory CareAwardBostonCaliforniaCardiacCardiovascular systemCaregiversCaringClinicalClinical assessmentsCloud ServiceComplementControl GroupsControlled StudyDataDecision ModelingDevelopmentDevicesDiagnosisDiagnosticDoctor of PhilosophyEdemaElectronicsEmergency department visitEngineeringEnrollmentEventFollow-Up StudiesFundingFutureGoalsHealthHealth Care CostsHealthcare SystemsHeartHeart RateHeart failureHome environmentHospitalizationHospitalsIndividualLeadLiquid substanceMachine LearningMasksMedicalMedicareMethodsMonitorMulticenter StudiesMulticenter TrialsOffice VisitsPatient CarePatient MonitoringPatientsPeripheralPharmaceutical PreparationsPhasePhotoplethysmographyPhysiciansPhysiologic MonitoringPhysiologicalPopulationPreventive careQuality of CareQuality of lifeRandomizedRandomized Controlled TrialsResearchResearch DesignResearch InfrastructureResearch PersonnelRespirationRiskSan FranciscoScientistSignal TransductionSingle-Blind StudySmall Business Innovation Research GrantSpecialistTechnologyTelemetryTestingTimeTissuesUniversitiesWorkWristclinical decision-makingcloud basedcostcost effectivenesscost efficientdesignhealth care serviceheart rate variabilityhemodynamicsimplantable deviceimprovedindexingmonitoring devicenovelprediction algorithmpredictive modelingpreventprogramsprototypesensortreatment as usualtreatment group
项目摘要
ReThink Medical, Inc. proposes to develop an ambulatory version of the physiologic monitoring technology it
validated in Phase I, the CorBand. The CorBand is designed to track key physiologic parameters that are
predictive of cardiac decompensation, to detect the early stages of decompensation, and to relay both the
physiologic data and generated alerts to relevant caregivers with the end goal of reducing hospitalizations by
enabling proactive/preventative care in the heart failure population. Heart failure effects 5.8 million individuals
in the US and the costs associated are approaching $40 billion annually. This technology will not only improve
the quality of life for heart failure patients, but also help to reduce this massive burden on the US healthcare
system. Our long term objective is to help drive the transformation from the reactive pay-for-service healthcare
paradigm to one that puts emphasis on preventative care through health monitoring technologies. Our specific
aims include (1) manufacturing a robust version of the device for use in two large, long term, ambulatory
studies. It will be validated using patients who have cardiac implantable electronic devices (CIEDs). Heart
rate (HR), heart rate variability (HRV), activity levels, and fluid index derived from the CorBand will be
compared with data collected from CIEDs manufactured by Medtronic and Boston Scientific and analyzed for
correlation. (2) The CorBand will be deployed in a large ambulatory population of HF patients. We will collect
the patient's clinical notes and note hospitalization events along with remote physiologic data from the
CorBand. We will use this data to further build a predictive model for cardiac decompensation using a number
of machine learning approaches. In aim (3), we will perform a controlled study on a population of HF patients.
All the subjects will wear the CorBand; we will use the data from half the subjects to predict decompensation
events, provide that information to subject's caregiver in order to provide preventative care. The other half will
receive usual care. We will then examine the number of HF related hospitalizations in both groups to evaluate
the ability of the CorBand to reduce hospitalizations.
ReThink Medical,Inc.建议开发生理监测技术的流动版本,
在第一阶段,CorBand得到验证。CorBand设计用于跟踪关键生理参数,
预测心脏代偿失调,检测代偿失调的早期阶段,并将两者传递给
生理数据并向相关护理人员发出警报,最终目标是通过以下方式减少住院治疗
从而能够在心力衰竭人群中进行主动/预防性护理。心力衰竭影响580万人
在美国,相关成本每年接近400亿美元。这项技术不仅能改善
提高心力衰竭患者的生活质量,同时也有助于减轻美国医疗保健的巨大负担
系统我们的长期目标是帮助推动从被动式按服务付费的医疗保健转型
从一个范例到一个强调通过健康监测技术进行预防性护理的范例。我们的具体
目的包括:(1)制造一种坚固的器械,用于两个大型、长期、流动的
问题研究将使用植入心脏植入式电子器械(CIED)的患者进行确认。心脏
将从CorBand导出心率(HR)、心率变异性(HRV)、活动水平和液体指数,
与从Medtronic和Boston Scientific制造的CIED收集的数据进行比较,并分析
相关性(2)CorBand将在大型非卧床HF患者人群中展开。我们将收集
患者的临床记录和记录住院事件沿着来自
CorBand。我们将使用这些数据进一步建立一个预测模型,心脏失代偿使用一些
机器学习的方法。在目标(3)中,我们将对HF患者人群进行对照研究。
所有受试者都将佩戴CorBand;我们将使用一半受试者的数据来预测失代偿
事件,将该信息提供给受试者的护理人员,以提供预防性护理。另一半将
接受常规护理。然后,我们将检查两组中HF相关住院的数量,
CorBand减少住院治疗的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reza Naima其他文献
Reza Naima的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reza Naima', 18)}}的其他基金
ReThink HF: A novel multi-parameter sensor for heart failure remote monitoring
ReThink HF:一种用于心力衰竭远程监测的新型多参数传感器
- 批准号:
8782282 - 财政年份:2014
- 资助金额:
$ 49.01万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Continuing Grant