Synthetic Mesenchymal Stem Cell Niches for Vascular Therapy
用于血管治疗的合成间充质干细胞生态位
基本信息
- 批准号:9306175
- 负责人:
- 金额:$ 37.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnisotropyArteriesAtherosclerosisBiochemicalBiocompatible MaterialsBiologicalBlood VesselsCell AdhesionCell Adhesion MoleculesCell Differentiation processCell TherapyCell secretionCell-Matrix JunctionCellsChemicalsChemistryClinicCoculture TechniquesDiseaseEnvironmentEnvironmental Risk FactorEvaluationFeedbackFibrinogenFibrosisFutureGelGoalsGrowth FactorHydrogelsIn VitroIndividualInterdisciplinary StudyIschemiaKnowledgeLeadLigandsMechanicsMesenchymal DifferentiationMesenchymal Stem CellsModelingMorbidity - disease rateNamesNatural regenerationPeptidesPeripheral arterial diseasePhenotypePhysiologicalPopulationProteinsReceptor CellRegulationReportingSheepSignal TransductionSignaling MoleculeSpecificityStenosisSystemTechnologyTissue EngineeringTissuesTranslationsTreatment EfficacyVascular DiseasesVascular Graftbaseblood perfusionclinical translationcytokinedensitydesignfunctional lossimprovedin vivoinnovationloss of functionmechanotransductionmimeticsmortalitynanofiberparacrinepublic health relevancescaffoldspatiotemporalstem cell therapysynergismtherapy outcome
项目摘要
DESCRIPTION (provided by applicant): Loss of function to arteries or the microvasculature, due to diseases such as atherosclerosis, peripheral artery diseases or ischemia, contributes to high morbidity and high mortality in the U.S. An emerging solution is mesenchymal stem cell (MSC) therapy, which has the potential to regenerate blood vessels and revolutionize the treatment of vascular diseases. However, results from MSC-based vascular therapies have been inconsistent, and worse, some studies have reported vascular dysfunction. These therapeutic outcomes are, at least in part, attributable to an ill-defined cell environment, which ultimately regulates MSC fate during therapy. To achieve successful MSC-based vascular therapy, several unresolved issues must be addressed: (a) suboptimal MSC environments that result in a mixed cell populations with low vascular specificity or signaling; (b) lack of mechanistic understandings as to how multifactorial environments determine MSC fate in vivo; and (c) limited platform technologies available for the translation of in vitro cell differentiatio environments to in vivo vascular therapies. To address these knowledge gaps, the overall goal of this proposal is to establish a comprehensive platform that recapitulates the synergism of the physical and biochemical environments in normal vascular tissues in order to perpetuate highly specific and mature vascular differentiation of MSCs for vascular therapy. Our hypothesis is that vessel-mimetic mechanical and biochemical environments provide synergistic signaling to MSCs, perpetuating vascular regeneration under physiological conditions in vitro and in vivo. To pursue our hypothesis, we will take an innovative approach by developing 3D nanofibrous niches with independently modulated microenvironment factors, i.e. matrix rigidity, ligand and cytokine, to optimize vascular cell regeneration, and incorporating these distinct niches into a graft scaffold with spatiotemporal control for evaluation under physiological flow. This approach is built on our team's biomaterial capabilities of producing nanofibrous materials with controlled rigidity, anisotropy and spatiotemporal release of proteins, and ligand incorporation. Three aims are proposed here: AIM 1 focuses on MSC-matrix interaction mechanisms underlying the rational design of 3D synthetic niche matrices for vascular differentiation; AIM 2 seeks to define synthetic niches that converge mechano-chemical signaling for optimal vascular regeneration; and AIM 3 integrates and evaluates synthetic niches with vascular grafts to demonstrate feasibility and provide critical feedback for future design and clinical translation. This new interdisciplinary study, combining biomaterials, cell signaling, vascular mechanobiology and tissue engineering, if successful, will help to accomplish our long-term goal of designing application-specific vascular microphysiological systems that can predict, improve and optimize cell-based vascular therapy.
描述(申请人提供):动脉或微血管功能的丧失,由于疾病,如动脉粥样硬化、外周动脉疾病或缺血,在美国导致高发病率和高死亡率。一种新兴的解决方案是间充质干细胞(MSC)治疗,它具有再生血管的潜力,并使血管疾病的治疗发生革命性变化。然而,基于MSC的血管治疗结果并不一致,更糟糕的是,一些研究报告了血管功能障碍。这些治疗结果至少部分归因于定义不明确的细胞环境,这最终决定了治疗过程中MSC的命运。为了实现成功的基于MSC的血管治疗,必须解决几个悬而未决的问题:(A)亚优化的MSC环境导致混合细胞群体的血管特异性或信号转导低;(B)对于多因素环境如何决定MSC在体内的命运缺乏机械性了解;以及(C)可用于将体外细胞分化为体内血管治疗的平台技术有限。为了解决这些知识空白,这项建议的总体目标是建立一个全面的平台,概括正常血管组织中物理和生化环境的协同作用,以便使MSCs在血管治疗中保持高度特异和成熟的血管分化。我们的假设是,模拟血管的机械和生化环境为MSCs提供协同信号,在体外和体内的生理条件下维持血管再生。为了实现我们的假设,我们将采取一种创新的方法,开发具有独立调节的微环境因素的3D纳米纤维壁龛,即基质刚性、配体和细胞因子,以优化血管细胞再生,并将这些不同的壁龛整合到具有时空控制的移植物支架中,以在生理流动下进行评估。这种方法建立在我们团队的生物材料能力的基础上,即生产具有受控刚性、蛋白质的各向异性和时空释放以及配体掺入的纳米纤维材料。这里提出了三个目标:目标1专注于合理设计用于血管分化的3D合成生态位矩阵的MSC-基质相互作用机制;目的2试图定义融合机械力化学信号以优化血管再生的合成生态位;以及目的3整合和评估合成生态位与血管移植,以证明可行性并为未来的设计和临床翻译提供关键的反馈。这项新的跨学科研究结合了生物材料、细胞信号、血管机械生物学和组织工程,如果成功,将有助于实现我们设计特定用途的血管微生理系统的长期目标,该系统可以预测、改进和优化基于细胞的血管治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Tan其他文献
Wei Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Tan', 18)}}的其他基金
Synthetic Mesenchymal Stem Cell Niches for Vascular Therapy
用于血管治疗的合成间充质干细胞生态位
- 批准号:
8719167 - 财政年份:2013
- 资助金额:
$ 37.08万 - 项目类别:
Synthetic Mesenchymal Stem Cell Niches for Vascular Therapy
用于血管治疗的合成间充质干细胞生态位
- 批准号:
8560094 - 财政年份:2013
- 资助金额:
$ 37.08万 - 项目类别:
Synthetic Mesenchymal Stem Cell Niches for Vascular Therapy
用于血管治疗的合成间充质干细胞生态位
- 批准号:
8883699 - 财政年份:2013
- 资助金额:
$ 37.08万 - 项目类别:
Synthetic Mesenchymal Stem Cell Niches for Vascular Therapy
用于血管治疗的合成间充质干细胞生态位
- 批准号:
10668868 - 财政年份:2013
- 资助金额:
$ 37.08万 - 项目类别:
Synthetic Mesenchymal Stem Cell Niches for Vascular Therapy
用于血管治疗的合成间充质干细胞生态位
- 批准号:
10461011 - 财政年份:2013
- 资助金额:
$ 37.08万 - 项目类别:
Synthetic Mesenchymal Stem Cell Niches for Vascular Therapy
用于血管治疗的合成间充质干细胞生态位
- 批准号:
10238173 - 财政年份:2013
- 资助金额:
$ 37.08万 - 项目类别:
Synthetic Mesenchymal Stem Cell Niches for Vascular Therapy
用于血管治疗的合成间充质干细胞生态位
- 批准号:
10512428 - 财政年份:2013
- 资助金额:
$ 37.08万 - 项目类别:
Synthetic Mesenchymal Stem Cell Niches for Vascular Therapy
用于血管治疗的合成间充质干细胞生态位
- 批准号:
10669622 - 财政年份:2013
- 资助金额:
$ 37.08万 - 项目类别:
Synthetic Mesenchymal Stem Cell Niches for Vascular Therapy
用于血管治疗的合成间充质干细胞生态位
- 批准号:
10886198 - 财政年份:2013
- 资助金额:
$ 37.08万 - 项目类别:
Synthetic Mesenchymal Stem Cell Niches for Vascular Therapy
用于血管治疗的合成间充质干细胞生态位
- 批准号:
9109668 - 财政年份:2013
- 资助金额:
$ 37.08万 - 项目类别:
相似海外基金
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
- 批准号:
2342129 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
- 批准号:
2330254 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
- 批准号:
23K17398 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
- 批准号:
2240506 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Continuing Grant
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
- 批准号:
23K05776 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
- 批准号:
2322719 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Continuing Grant
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
- 批准号:
EP/X025454/1 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Research Grant
Global optimization of anisotropy in antiferromagnets
反铁磁体各向异性的全局优化
- 批准号:
2740295 - 财政年份:2022
- 资助金额:
$ 37.08万 - 项目类别:
Studentship