Ensemble neural dynamics in the medial prefrontal cortex underlying cognitive flexibility and reinforcement learning
内侧前额叶皮层的整体神经动力学是认知灵活性和强化学习的基础
基本信息
- 批准号:9450063
- 负责人:
- 金额:$ 23.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-26 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimal BehaviorAnimalsArchitectureAreaAttention Deficit DisorderBehaviorBehavioralBeliefBiological Neural NetworksBrainCellsCodeCognitionCognitiveComputational algorithmDataData AnalysesData SetDecision MakingDimensionsDiseaseElectrophysiology (science)ElementsEmployee StrikesFeedbackFutureGoalsHealthImageImpairmentIndividualJointsLearningLinkMedialMental DepressionMethodsMicroscopeModelingMonitorMusNeural Network SimulationNeuronsOpticsOutcomePatternPersonsPlayPopulationPrefrontal CortexProbabilityPsychological reinforcementPyramidal CellsRecording of previous eventsRecurrenceResearchRewardsRodentRoleSchizophreniaSignal TransductionSliceSpecific qualifier valueStructureSupervisionTechnologyTestingTrainingUpdateViralWorkarmbasecell cortexcellular imagingcomputer frameworkdata modelingexpectationexperimental studyflexibilityhigh dimensionalitymicroendoscopemouse modelnetwork modelsneural circuitneuromechanismnovelrelating to nervous systemtheoriesway finding
项目摘要
Abstract
The prefrontal cortex is thought to play a crucial role in cognitive flexibility, in part by updating a person's
expectations about the external world and the likely consequences of candidate actions based on the feedback
gained from past actions. Deficits in this form of cognition occur in multiple psychiatric conditions in which
prefrontal cortex is implicated. Despite much research, the mechanisms by which prefrontal neural circuits
contribute to flexible decision-making and switches in cognitive strategy remain unclear. We will examine these
issues using reinforcement learning theory, which specifies the optimal strategies for selecting future actions
given a subject's past history of actions taken and rewards received. We will first gather the largest set of multi-
neuronal recordings ever taken in prefrontal cortex, and then use reinforcement learning theory to analyze the
data and deduce the circuit mechanisms by which the prefrontal cortex stores and updates its internal beliefs
about the external world and the likely results of future actions.
Past studies in behaving animals have found evidence for individual prefrontal cells that, on average,
encode information related to cognitive strategy and action selection, but with limited data it has not been
possible to identify how prefrontal circuits maintain and update this information over the course of multiple
decisions, actions and outcomes. To collect sufficient data and create better models of prefrontal circuits, we
will use a miniature microscope enabling us to monitor large neural ensembles in active mice. Our goals are to:
(1) Develop and validate an experimental paradigm for imaging the concurrent dynamics of hundreds of
prefrontal cells in mice flexibly switching between two different strategies of spatial navigation. Our pilot data
show mice can perform the task well, that prefrontal activity is crucial for strategy-switching, and that prefrontal
cortex contains cells whose dynamics appear to signal estimates of the optimal strategy. We will verify mice
can follow bona fide navigation strategies and not just memorize spatial paths that yield reward. We will also
confirm the prefrontal cells stay healthy and have normal activity patterns throughout the multi-day experiment.
(2) Use reinforcement learning theory to analyze our large datasets and create neural circuit models of how
prefrontal cortex stores and updates its beliefs to guide future actions. Using the theory we will first create
observer-actor models of mouse behavior. We will then apply supervised and unsupervised methods of data
analysis to assess whether prefrontal neural ensembles encode task-related, abstract variables such as belief
and value. Using our observer-actor models and analyses of neural dynamics, we will train recurrent neural
network models to solve the strategy-switching task. The resulting circuit models of reinforcement learning will
then yield testable predictions about how the mice and prefrontal cells should behave when we modify the task.
Overall, our study will address key unanswered questions about prefrontal function and seeks to attain
a mechanistic understanding of how prefrontal circuits contribute to flexible decision-making.
摘要
前额叶皮层被认为在认知灵活性方面起着至关重要的作用,部分原因是它更新了一个人的认知能力。
对外部世界的期望以及基于反馈的候选行为的可能后果
从过去的行动中获得的。这种认知形式的缺陷发生在多种精神疾病中,
前额叶皮层也有牵连尽管有很多研究,前额叶神经回路的机制
有助于灵活的决策和认知策略的转换仍不清楚。我们将研究这些
问题使用强化学习理论,它指定了选择未来行动的最佳策略
考虑到受试者过去采取的行动和获得的奖励的历史。首先,我们将收集最大的一组多-
神经元记录,然后使用强化学习理论来分析
数据并推断出前额叶皮层存储和更新其内部信念的电路机制
关于外部世界和未来行动的可能结果。
过去对行为动物的研究发现,平均而言,
编码与认知策略和行动选择相关的信息,但由于数据有限,
可以确定前额叶回路如何在多个过程中维持和更新这些信息。
决定、行动和结果。为了收集足够的数据并创建更好的前额叶回路模型,我们
将使用微型显微镜,使我们能够监测活跃小鼠的大型神经集合。我们的目标是:
(1)开发并验证一个实验范例,用于成像数百个
前额叶细胞在两种不同的空间导航策略之间灵活切换。我们的试点数据
显示老鼠可以很好地完成任务,前额叶活动对策略转换至关重要,
皮层包含的细胞的动态似乎信号估计的最佳策略。我们将验证小鼠
可以遵循真正的导航策略,而不仅仅是记住产生回报的空间路径。我们还将
确认前额叶细胞在多日实验中保持健康并具有正常的活动模式。
(2)使用强化学习理论来分析我们的大型数据集,并创建神经电路模型,
前额叶皮层储存并更新其信念,以指导未来的行动。利用我们首先要创造的理论
小鼠行为的行为模型。然后,我们将应用数据的监督和非监督方法
分析以评估前额叶神经系统是否编码与任务相关的抽象变量,如信念
和价值使用我们的行为者模型和神经动力学分析,我们将训练递归神经网络,
网络模型来解决策略转换任务。由此产生的强化学习电路模型将
然后产生可测试的预测,即当我们修改任务时,小鼠和前额叶细胞应该如何表现。
总的来说,我们的研究将解决有关前额叶功能的关键未回答的问题,并寻求实现
对前额叶回路如何有助于灵活决策的机械理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Surya Ganguli其他文献
Surya Ganguli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Surya Ganguli', 18)}}的其他基金
Research Project 3 - Theory and computation of internal state dynamics
研究项目3 - 内态动力学理论与计算
- 批准号:
10687146 - 财政年份:2021
- 资助金额:
$ 23.76万 - 项目类别:
Research Project 3 - Theory and computation of internal state dynamics
研究项目3 - 内态动力学理论与计算
- 批准号:
10047734 - 财政年份:2021
- 资助金额:
$ 23.76万 - 项目类别:
Research Project 3 - Theory and computation of internal state dynamics
研究项目3 - 内态动力学理论与计算
- 批准号:
10490241 - 财政年份:2021
- 资助金额:
$ 23.76万 - 项目类别:
Tracking pre-seizure dynamics to predict and control seizures
跟踪癫痫发作前动态以预测和控制癫痫发作
- 批准号:
10269920 - 财政年份:2020
- 资助金额:
$ 23.76万 - 项目类别:
Tracking pre-seizure dynamics to predict and control seizures
跟踪癫痫发作前动态以预测和控制癫痫发作
- 批准号:
10611917 - 财政年份:2020
- 资助金额:
$ 23.76万 - 项目类别:
Tracking pre-seizure dynamics to predict and control seizures
跟踪癫痫发作前动态以预测和控制癫痫发作
- 批准号:
10400963 - 财政年份:2020
- 资助金额:
$ 23.76万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 23.76万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 23.76万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 23.76万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 23.76万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 23.76万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 23.76万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 23.76万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 23.76万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 23.76万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 23.76万 - 项目类别:
Research Grant














{{item.name}}会员




