Research Project 3 - Theory and computation of internal state dynamics

研究项目3 - 内态动力学理论与计算

基本信息

  • 批准号:
    10490241
  • 负责人:
  • 金额:
    $ 101.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-17 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Research Project 3 - Theory and computation of internal state dynamics Leads: Surya Ganguli PhD and Krishna Shenoy PhD (with David Sussillo PhD) Project Summary This research project will develop both theoretical principles and computational methods for elucidating how external inputs interact with diverse internal neural state dynamics to drive fundamental neural computations, including: (1) the generation of accurate percepts through cortical amplification of weak sensory inputs amidst spontaneous background activity; (2) Bayesian integration of multisensory inputs to compute internal estimates of external state variables and their uncertainty; and (3) the triggering and maintenance of discrete internal attractor states dictating stable behaviors. Additionally, we will develop general and widely applicable computational tools to empower the simultaneous all-optical read-write multi-SLM technology, developed in RP1 and generalized to RP2 and RP4. These tools will: (1) employ state of the art systems identification methods to algorithmically extract from neural data network models of internal state dynamics; and (2) employ model based control theoretic methods to identify interesting optogenetic stimulation patterns that can both reveal computational insights into, as well as enable control of, the dynamics of cortical circuits. Our theories and computational tools for systems identification, insight and control, will both drive the design of experiments, and in-turn be iteratively refined by the outcomes of these experiments, across all RP’s. In Aim 1 we will develop theories for how the interplay of external inputs, and internal spontaneous activity in spiking neural networks with multiple cell-types, can set fundamental limits on the perceptual sensitivity of cortical networks. We will iteratively test these theories in a tight theory-experiment loop across 2 homologous sensory systems: mouse V1 in RP1 and macaque V1 in RP2. This parallel study will enable us to elucidate both convergent and divergent properties of the fundamental computation of sensory amplification in two different cortical networks that differ drastically in scale. We will also explore how the interplay between spontaneous and evoked activity is modified by diverse internal state changes, including attention, thirst, satiety, and top- down control of V1 in tight collaboration with experiments done in RP1 and RP2. In Aim 2 we will develop theories for how neural circuits with basic synaptic and cellular properties can combine internal states with external inputs to perform Bayesian integration of evidence. We will iteratively test and refine such theories in theory driven experiments on Bayesian updating of position in mouse V1, MEC, RSC and hippocampus in RP4, and Bayesian updating of evidence in joint recordings of macaque V1 and FEF in RP2. And in Aim 3 we will develop our generalized computational tools described above for systems identification, insight and control, and we will validate them by studying diverse internal state dynamics, including the robustness and flexibility of attractor transitions in mouse OFC in RP1 and mouse RSC in RP4, Bayesian integration of position in mouse RSC in RP4 and Bayesian integration of evidence in macaque V1-FEF loops in RP2. Thus overall, RP3 plays a unifying role through tight bi-directional feedback loops with RP1, RP2, and RP4 and the DSC.
研究项目3 - 内态动力学理论与计算 领导者:Surya Ganguli 博士和 Krishna Shenoy 博士(与 David Sussillo 博士) 项目概要 该研究项目将开发理论原理和计算方法,以阐明如何 外部输入与不同的内部神经状态动力学相互作用以驱动基本的神经计算, 包括:(1)通过皮层放大微弱的感觉输入来产生准确的知觉 自发的背景活动; (2) 多感官输入的贝叶斯积分计算内部 外部状态变量及其不确定性的估计; (3)离散的触发和维持 内部吸引子状态决定稳定的行为。此外,我们将开发通用且广泛适用的 计算工具支持同时全光读写多SLM技术,开发于 RP1 并推广到 RP2 和 RP4。这些工具将:(1)采用最先进的系统识别 从内部状态动力学的神经数据网络模型中通过算法提取的方法; (2) 雇用 基于模型的控制理论方法来识别有趣的光遗传学刺激模式,这些模式既可以 揭示对皮层回路动态的计算洞察并实现对其动态的控制。我们的理论 以及用于系统识别、洞察和控制的计算工具,都将推动设计 实验,然后根据这些实验的结果在所有 RP 中进行迭代完善。瞄准 1 我们将发展关于外部输入和内部自发活动如何相互作用的理论 具有多种细胞类型的神经网络可以对皮质的感知敏感性设置基本限制 网络。我们将在 2 个同源感官的紧密理论实验循环中迭代测试这些理论 系统:RP1 中的小鼠 V1 和 RP2 中的猕猴 V1。这项平行研究将使我们能够阐明 两种不同的感觉放大基本计算的收敛和发散特性 规模截然不同的皮质网络。我们还将探讨自发性之间如何相互作用 诱发的活动会受到各种内部状态变化的影响,包括注意力、口渴、饱腹感和顶部感。 与 RP1 和 RP2 中进行的实验密切合作,下调 V1 的控制。在目标 2 中,我们将开发 具有基本突触和细胞特性的神经回路如何将内部状态与 用于执行证据的贝叶斯整合的外部输入。我们将反复测试和完善这些理论 理论驱动的 RP4 小鼠 V1、MEC、RSC 和海马位置贝叶斯更新实验, RP2 中猕猴 V1 和 FEF 联合记录证据的贝叶斯更新。在目标 3 中,我们将 开发上述通用计算工具,用于系统识别、洞察和控制, 我们将通过研究不同的内部状态动态来验证它们,包括鲁棒性和灵活性 RP1 中的小鼠 OFC 和 RP4 中的小鼠 RSC 中的吸引子转变,位置的贝叶斯积分 RP4 中的小鼠 RSC 和 RP2 中猕猴 V1-FEF 环中证据的贝叶斯整合。因此总体而言,RP3 通过与 RP1、RP2、RP4 和 DSC 的紧密双向反馈回路发挥统一作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Surya Ganguli其他文献

Surya Ganguli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Surya Ganguli', 18)}}的其他基金

Research Project 3 - Theory and computation of internal state dynamics
研究项目3 - 内态动力学理论与计算
  • 批准号:
    10687146
  • 财政年份:
    2021
  • 资助金额:
    $ 101.45万
  • 项目类别:
Research Project 3 - Theory and computation of internal state dynamics
研究项目3 - 内态动力学理论与计算
  • 批准号:
    10047734
  • 财政年份:
    2021
  • 资助金额:
    $ 101.45万
  • 项目类别:
Tracking pre-seizure dynamics to predict and control seizures
跟踪癫痫发作前动态以预测和控制癫痫发作
  • 批准号:
    10269920
  • 财政年份:
    2020
  • 资助金额:
    $ 101.45万
  • 项目类别:
Tracking pre-seizure dynamics to predict and control seizures
跟踪癫痫发作前动态以预测和控制癫痫发作
  • 批准号:
    10611917
  • 财政年份:
    2020
  • 资助金额:
    $ 101.45万
  • 项目类别:
Tracking pre-seizure dynamics to predict and control seizures
跟踪癫痫发作前动态以预测和控制癫痫发作
  • 批准号:
    10400963
  • 财政年份:
    2020
  • 资助金额:
    $ 101.45万
  • 项目类别:
Ensemble neural dynamics in the medial prefrontal cortex underlying cognitive flexibility and reinforcement learning
内侧前额叶皮层的整体神经动力学是认知灵活性和强化学习的基础
  • 批准号:
    9450063
  • 财政年份:
    2017
  • 资助金额:
    $ 101.45万
  • 项目类别:

相似国自然基金

多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Identifying risk earlier: Prenatal exposures, neurodevelopment, and infant sleep as pathways to toddler attention and behavior dysregulation
及早识别风险:产前暴露、神经发育和婴儿睡眠是导致幼儿注意力和行为失调的途径
  • 批准号:
    10752879
  • 财政年份:
    2023
  • 资助金额:
    $ 101.45万
  • 项目类别:
Brain-behavior vulnerability to sleep loss in children: a dimensional study of attention and impulsivity
儿童睡眠不足的大脑行为脆弱性:注意力和冲动的维度研究
  • 批准号:
    10629272
  • 财政年份:
    2021
  • 资助金额:
    $ 101.45万
  • 项目类别:
Brain-behavior vulnerability to sleep loss in children: a dimensional study of attention and impulsivity
儿童睡眠不足的大脑行为脆弱性:注意力和冲动的维度研究
  • 批准号:
    10297377
  • 财政年份:
    2021
  • 资助金额:
    $ 101.45万
  • 项目类别:
Combining attention and metacognitive training to improve goal directed behavior in Veterans with TBI
结合注意力和元认知训练来改善患有 TBI 的退伍军人的目标导向行为
  • 批准号:
    9892500
  • 财政年份:
    2020
  • 资助金额:
    $ 101.45万
  • 项目类别:
Examining naturalistic social engagement: Using mobile eye-tracking to investigate individual differences and within-person variation in adolescent behavior, attention, and neural processing
检查自然主义的社会参与:使用移动眼动追踪来研究青少年行为、注意力和神经处理的个体差异和人内差异
  • 批准号:
    10115522
  • 财政年份:
    2020
  • 资助金额:
    $ 101.45万
  • 项目类别:
Nobel test batteries and therapies development for the time perception skill of the Attention-Deficit Hyperactivity Disorder children based on brain activities and behavior
诺贝尔奖测试电池和疗法开发基于大脑活动和行为的注意力缺陷多动障碍儿童的时间感知能力
  • 批准号:
    20K14058
  • 财政年份:
    2020
  • 资助金额:
    $ 101.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Examining naturalistic social engagement: Using mobile eye-tracking to investigate individual differences and within-person variation in adolescent behavior, attention, and neural processing
检查自然主义的社会参与:使用移动眼动追踪来研究青少年行为、注意力和神经处理的个体差异和人内差异
  • 批准号:
    10321277
  • 财政年份:
    2020
  • 资助金额:
    $ 101.45万
  • 项目类别:
Combining attention and metacognitive training to improve goal directed behavior in Veterans with TBI
结合注意力和元认知训练来改善患有 TBI 的退伍军人的目标导向行为
  • 批准号:
    10390281
  • 财政年份:
    2020
  • 资助金额:
    $ 101.45万
  • 项目类别:
Examining naturalistic social engagement: Using mobile eye-tracking to investigate individual differences and within-person variation in adolescent behavior, attention, and neural processing
检查自然主义的社会参与:使用移动眼动追踪来研究青少年行为、注意力和神经处理的个体差异和人内差异
  • 批准号:
    9911085
  • 财政年份:
    2020
  • 资助金额:
    $ 101.45万
  • 项目类别:
Shyness, Attention and Anxiety: Bridging Physiology and Behavior in the Prediction of Social Outcomes
害羞、注意力和焦虑:在预测社会结果中连接生理学和行为
  • 批准号:
    518802-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 101.45万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了