Active Membrane for Artificial Lung Applications
用于人工肺应用的活性膜
基本信息
- 批准号:9226544
- 负责人:
- 金额:$ 7.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAcuteAdult Respiratory Distress SyndromeAlveolarAmericanAmplifiersAreaArtificial MembranesBiocompatible MaterialsBloodBlood VesselsBlood capillariesBlood flowBlood gasCarbon DioxideCardiac Surgery proceduresCardiopulmonary BypassCardiovascular systemCessation of lifeChronic DiseaseChronic lung diseaseClinicalCoagulation ProcessComplexDevicesDiffusionDimensionsDoctor of PhilosophyElementsEvaluationExtracorporeal Membrane OxygenationFailureFrequenciesGasesGenerationsHeightHuman ResourcesIn VitroInflammatory ResponseLegal patentLiquid substanceLungLung TransplantationLung diseasesMeasuresMechanical ventilationMedicalMembraneMicrobubblesMicrofabricationModificationMolecularNatureNoble GasesOperative Surgical ProceduresOxygenOxygen Therapy CareOxygenatorsPatientsPerformancePolymersProcessPumpResearch PersonnelRespiratory physiologyRestShapesStreamSupport SystemSurfaceSurgeonSystemTechnologyTestingTimeVasodilator AgentsWaterWorkartificial lungbasebiomaterial compatibilitycapillarydesignheat exchangerinnovationkillingsmortalityportabilitypressurequantumrespiratoryscale upsimulationwater flow
项目摘要
Project Summary/Abstract
Lung disease annually kills more than 3 million people worldwide and 400,000 Americans (1 out of 6 deaths).
More than 235 million people worldwide and 35 million Americans are suffering from chronic lung disease.
Over 200,000 American people are suffering from ARDS (adult respiratory distress syndrome) with its mortality
rate of 25 - 40%. The traditional respiratory support for ARDS is mechanical ventilation to compensate
pulmonary deficiency and to support respiratory function. However, high airway pressure, high oxygen
concentration and over-distention can cause many complications, possibly resulting in multi-organ failure. The
medical support for the chronic disease can be oxygen therapy and pulmonary vasodilators but the long-term
treatment is ultimately lung transplantation. Artificial lung technologies, which are most commonly used for
cardiopulmonary bypass during open-heart surgery, have been developed and modified in order to provide
respiratory support with the acute as well as chronic lung disease patients. However, the current clinical use of
portable artificial lung is very limited to only extracorporeal membrane oxygenation (ECMO) in ICU, only
supporting the respiratory needs of patients at rest. Truly portable or long-term (> days) support systems are
not available with current technologies due to low gas exchange performance and biocompatibility issues.
A crucially important element in artificial lung is the intervened membrane where gas (O2 and CO2) exchange
occurs between gas and blood streams. The exchange mechanism is extremely slow diffusion across the
streams and membrane. This proposal aims to attack the fundamental mechanism in gas exchange (diffusion)
by using an innovative concept of active membrane (AM). The AM generates strong cross-streams, normal to
the membrane surface, thus agitates the laminar blood stream, and eventually make a quantum leap in gas
exchange. The cross-streams directly carry mass (O2-/CO2-dissolved entities) from and to the membrane
orders of magnitude faster than molecular diffusion, like a conveyer belt. As a result, this system would not
require such a high surface area as found in natural lungs, eventually eliminating many complex issues of
scale-up fabrication and integration encountered in natural lung mimicking. Furthermore, the decreased
surface area would minimize inflammatory response to the foreign surface and eventually clotting.
This project will focus on proving the proposed concept of AM via in vitro blood flow testing. Detailed task plans
are (1) design and optimize active membranes along with CFD (computational fluid dynamics) analysis; (2)
microfabricate optimized AMs and integrate them in flow loops; and (3) in vitro evaluate gas exchange
performance in the water/blood flow loops with hemocompatibility study. The primary innovation of this project
is to develop a new class of AMs to replace existing diffusion-based transport mechanism in artificial lung. The
significance of this work is to make a quantum leap in gas exchange that allows for truly portable (wearable),
highly efficient, artificial lungs.
项目摘要/摘要
肺病每年导致全球300多万人和40万美国人死亡(每6人中就有1人死亡)。
全世界有超过2.35亿人和3500万美国人患有慢性肺病。
超过20万美国人患有ARDS(成人呼吸窘迫综合征)并导致死亡
税率为25%-40%。ARDS的传统呼吸支持方式是机械通气代偿。
对肺功能不全和呼吸功能有支持作用。然而,高气道压力,高氧气
注意力集中和过度膨胀会导致许多并发症,可能导致多器官衰竭。这个
对于慢性疾病的医疗支持可以是氧疗和肺血管扩张剂,但长期
最终的治疗方法是肺移植。人工肺技术,这是最常用的
在心内直视手术期间的体外循环,已经被开发和修改,以便提供
急性和慢性肺部疾病患者的呼吸支持。然而,目前临床上使用的
便携式人工肺仅限于ICU中的体外膜氧合(ECMO),仅
支持患者休息时的呼吸需求。真正便携或长期(>;天)的支持系统
由于气体交换性能低和生物兼容性问题,目前的技术无法使用。
人工肺中一个至关重要的元素是气体(O2和CO2)交换的中间膜
发生在气体和血液之间。这种交换机制的扩散速度极慢。
溪流和薄膜。这一提议旨在攻击气体交换(扩散)的基本机制。
通过使用一种创新的活性膜(AM)概念。AM生成强交叉流,正常到
膜表面,从而搅动层流血流,最终在气体中实现量子飞跃
交换。横流直接携带物质(O2-/CO2-溶解的实体)进出膜
比分子扩散快几个数量级,就像传送带一样。因此,这个系统不会
需要如此高的表面积,就像在自然肺部一样,最终消除了许多复杂的
在自然肺模拟中遇到的放大制造和集成。此外,减少了
表面积将最大限度地减少对异物表面的炎症反应,最终导致凝结。
本项目将集中于通过体外血流测试来验证AM的概念。详细的任务计划
包括(1)结合CFD(计算流体力学)分析设计和优化活性膜;(2)
微制造优化的AM并将其集成在流动回路中;以及(3)体外评估气体交换
在水/血流循环中的表现与血液相容性研究。该项目的主要创新之处在于
目的是开发一种新型的肺泡巨噬细胞,以取代现有的基于扩散的人工肺转运机制。这个
这项工作的意义是在气体交换方面实现了巨大的飞跃,允许真正的便携(可穿戴),
高效的人工肺。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sung Kwon Cho其他文献
Sung Kwon Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 7.35万 - 项目类别:
Operating Grants














{{item.name}}会员




