Resolving the Mechano-Chemical Regulation of Microbial Populations in Microfluidic Devices
解决微流体装置中微生物种群的机械化学调节问题
基本信息
- 批准号:9310280
- 负责人:
- 金额:$ 30.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:ArchitectureBacteriaBehaviorBiologicalBiological ModelsBiophysicsBioreactorsCell Cycle ProgressionCell divisionCellsChemicalsCommunitiesComputer SimulationConfined SpacesCuesCulture TechniquesDevicesDrug resistanceElasticityElastomersElementsEnvironmentEscherichia coliEvolutionExtracellular MatrixFeedbackFluorescenceGene ExpressionGoalsGrowthGrowth and Development functionHabitatsIndividualInvadedJointsKnowledgeLiquid substanceMeasurementMeasuresMechanical StressMechanicsMicrobeMicrobial BiofilmsMicrofluidic MicrochipsMicrofluidicsModernizationMolecularNatureNosocomial InfectionsNutrientOutcomePathway interactionsPhenotypePlanet EarthPopulationPopulation BiologyPopulation DynamicsPopulation GeneticsPopulation PressuresPropertyRegulationReporterReportingResearchRoleSaccharomycetalesStressTechniquesThermodynamicsTimeTissuesTranscendbasebiophysical modelblindchemical reactioncomputer frameworkdesignexperimental studyflaskslithographymathematical modelmicrobialmicrobial communitymolecular dynamicsnovelphysical propertypredictive modelingpressurepublic health relevanceresponseself organizationsimulationspatiotemporaltheoriestooltumor
项目摘要
DESCRIPTION (provided by applicant): When cells grow and divide to form dense populations, they interact both chemically and physically. For instance, cells in growing tumors or microbial/fungal biofilms compete for nutrients and space, thereby exerting chemical and physical stresses on each other. Although recent years have uncovered a previously hidden layer of mechanical regulation of fate determination and growth rates in mammalian tissues, little is known about the consequences of mechanical constraints on single-celled microbes, largely, due to a lack of appropriate culturing techniques. The objective of the proposed research is to fill this gap by quantifying the cellular and multi- cellular response of spatially confined microbial communities to well-defined chemical and physical stresses. To this end, the P.I. proposes tightly-controlled microfluidic experiments and novel biophysical simulations and theory that bridges the gap in spatio-temporal scales between single cells and entire populations. The proposed research leverages a continual feedback between theory and experiments to achieve a predictive understanding of self-organization in microbial populations in terms of the joint actions of individual cells. The results will significantly advance our understanding of spatio-temporal aspects of biofilm formation, and elucidate specifically how cellular populations respond to combinations of physical and chemical cues, which is key to the rational design of strategies to battle microbial and fungal biofilm growth and to limit their abilty to evolve drug resistance. Further, the planned novel microfluidic devices and computer simulations will be of broad utility to the biophysics community for the goal of dissecting collective properties of microbial populations. The P.I. has three specific aims. First, he will develop a novel design for microfluidic culturing devices, a microfluidic mechano-chemostat, in which chemical and mechanical conditions can be tightly controlled. Second, he will use this device in conjunction with biophysical modeling to explore cellular response to mechano-chemical cues, focusing at first on single-celled funghi and bacteria. Third, extrapolating from microfluidic population measurements, he will develop theory and simulations to predict the behavior of populations from the joint action of individual cells. Aim 1 uses state-of-the-art microfluidic techniques to transcend the limitations of microfluidic culturing devices, which lack physical control. The experimental approaches to Aim 2 are based on automated spatio-temporal tracking of cells in microfluidic chambers and fluorescence markers reporting changes in gene expression. The simulations developed for Aim 3 synthesize modern population biology theory with the molecular dynamics of physical and chemical fields.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oskar Hallatschek其他文献
Oskar Hallatschek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oskar Hallatschek', 18)}}的其他基金
Resolving the Mechano-Chemical Regulation of Microbial Populations in Microfluidic Devices
解决微流体装置中微生物种群的机械化学调节问题
- 批准号:
8946940 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Biomechanical Regulation of Microbial Self-Organization in Confined Environments
密闭环境中微生物自组织的生物力学调节
- 批准号:
10445778 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Biomechanical Regulation of Microbial Self-Organization in Confined Environments
密闭环境中微生物自组织的生物力学调节
- 批准号:
10704020 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 30.03万 - 项目类别:
Continuing Grant
Bacteria sensory transduction from gut to brain to modulate behavior
从肠道到大脑的细菌感觉转导来调节行为
- 批准号:
10586158 - 财政年份:2023
- 资助金额:
$ 30.03万 - 项目类别:
Regulation of infectious behavior and virulence-related genes in phytopathogenic bacteria by plant-derived signals
植物源信号对植物病原菌感染行为和毒力相关基因的调节
- 批准号:
22H02348 - 财政年份:2022
- 资助金额:
$ 30.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dynamic behavior and pathological significance of small RNA in outer membrane vesicles of periodontopathic bacteria
牙周病菌外膜囊泡小RNA的动态行为及病理意义
- 批准号:
21KK0164 - 财政年份:2021
- 资助金额:
$ 30.03万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
The Study of ODE Quorum Sensing Models of Collective Behavior of Bacteria
细菌集体行为的ODE群体感应模型研究
- 批准号:
563492-2021 - 财政年份:2021
- 资助金额:
$ 30.03万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Modulation of pheromone-dependent host behavior by gut bacteria
合作研究:肠道细菌调节信息素依赖性宿主行为
- 批准号:
2042100 - 财政年份:2021
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
Collaborative Research: Modulation of pheromone-dependent host behavior by gut bacteria
合作研究:肠道细菌调节信息素依赖性宿主行为
- 批准号:
2042101 - 财政年份:2021
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
Elucidation of source and environmental behavior of antibiotic-resistant bacteria and resistance genes by microbial source tracking
通过微生物源追踪阐明抗生素耐药细菌和耐药基因的来源和环境行为
- 批准号:
20H04357 - 财政年份:2020
- 资助金额:
$ 30.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Efficacy and behavior of lactic acid bacteria using neurotransmitters as growth-promoting factors under host stress
使用神经递质作为生长促进因子的乳酸菌在宿主应激下的功效和行为
- 批准号:
20K06384 - 财政年份:2020
- 资助金额:
$ 30.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of practical use of useful bacteria by understanding their behavior in the environment
通过了解有用细菌在环境中的行为来开发有用细菌的实际用途
- 批准号:
19H02865 - 财政年份:2019
- 资助金额:
$ 30.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)