Single-Molecule Studies of Non-Homologous DNA End Joining

非同源 DNA 末端连接的单分子研究

基本信息

  • 批准号:
    9021668
  • 负责人:
  • 金额:
    $ 32.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The goal of this application is to address critical gaps in our understanding of the Non-homologous end joining (NHEJ) DNA repair pathway using new single molecule methods. NHEJ is the main pathway for repair of DNA double strand breaks (DSBs), the most cytotoxic form of DNA damage, resulting from Ionizing Radiation (IR) and chemotherapeutics. Mutations in NHEJ proteins are associated with genomic instability, IR sensitivity and severe combined immunodeficiency (SCID). Consequently, the targeted inhibition of the NHEJ pathway is of importance for sensitization of cancer cells in IR therapy. The mechanisms that control NHEJ play a key role in development and in response to cancer therapy, but the current state of knowledge regarding the NHEJ repair process is limited. We especially know very little about the physical nature of the NHEJ complex and how it is assembled, as common biochemical, structural and cell biology methods are limited in their capacities to resolve this information. Without this level of understanding, insights into NHEJ mutations that cause IR sensitivity and immunodeficiency and strategies for inhibiting NHEJ in neoplastic cells remain stagnant. In this application we utilize innovative single-molecule methods to define the NHEJ repair process. We use an array of new single-molecule biochemical methods to define the two critical steps of NHEJ: Assembly of NHEJ complex on DNA ends (Aim-1) and synapsis of DNA ends (Aim-2). Within these aims we will determine the specific functional organization of NHEJ complex components, their dependence on DNA end chemistry, and the consequence of their clinical and structural mutations. In Aim-3 we study NHEJ in cells. We will define the nanoscale architecture of NHEJ complexes in cells and determine their association with cellular DNA damage response (DDR) factors and characterize how these are modulated in different types of DSB lesions. Finally, we will determine the consequence of clinical and structural mutations in NHEJ proteins and the effect of NHEJ inhibitors on the organization of NHEJ complexes in cells. Our results will provide a platform for addressing novel hypotheses with cutting-edge single-molecule technology, with enormous potential for advancing the field of DNA damage research.
 描述(由申请人提供):本申请的目的是使用新的单分子方法解决我们对非同源末端连接(NHEJ)DNA修复途径理解中的关键空白。NHEJ是修复DNA双链断裂(DSB)的主要途径,DSB是由电离辐射(IR)和化疗药物引起的最具细胞毒性的DNA损伤形式。NHEJ蛋白的突变与基因组不稳定性、IR敏感性和严重联合免疫缺陷(SCID)相关。因此,靶向抑制NHEJ通路对于IR治疗中癌细胞的敏化是重要的。 控制NHEJ的机制在发展和对癌症治疗的反应中起着关键作用,但目前关于NHEJ修复过程的知识是有限的。我们对NHEJ复合物的物理性质以及它是如何组装的知之甚少,因为普通的生物化学,结构和细胞生物学方法在解决这些信息方面的能力有限。如果没有这种水平的理解,对导致IR敏感性和免疫缺陷的NHEJ突变的见解以及抑制肿瘤细胞中NHEJ的策略仍然停滞不前。在这个应用中,我们利用创新的单分子方法来定义NHEJ修复过程。我们使用一系列新的单分子生物化学方法来定义NHEJ的两个关键步骤:NHEJ复合物在DNA末端的组装(Aim-1)和DNA末端的突触(Aim-2)。在这些目标中,我们将确定NHEJ复合物组分的特定功能组织,它们对DNA末端化学的依赖,以及它们的临床和结构突变的后果。在Aim-3中,我们研究了细胞中的NHEJ。我们将定义NHEJ复合物在细胞中的纳米级结构,并确定它们与细胞DNA损伤反应(DDR)因子的相关性,并表征这些因子在不同类型的DSB病变中是如何调制的。最后,我们将确定NHEJ蛋白的临床和结构突变的后果以及NHEJ抑制剂对细胞中NHEJ复合物组织的影响。我们的研究结果将提供一个平台,用尖端的单分子技术来解决新的假设,具有推进DNA损伤研究领域的巨大潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eli Rothenberg其他文献

Eli Rothenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eli Rothenberg', 18)}}的其他基金

Mechanisms of Human DNA Double-Strand Break Repair via Quantitative Single-Molecule Imaging - Equipment Supplement
通过定量单分子成像修复人类 DNA 双链断裂的机制 - 设备补充
  • 批准号:
    10389468
  • 财政年份:
    2020
  • 资助金额:
    $ 32.63万
  • 项目类别:
Mechanism and Fidelity of RAG mediated DNA recombination
RAG介导的DNA重组的机制和保真度
  • 批准号:
    10404048
  • 财政年份:
    2020
  • 资助金额:
    $ 32.63万
  • 项目类别:
Mechanisms of Human DNA Double-Strand Break Repair via Quantitative Single-Molecule Imaging
通过定量单分子成像修复人类 DNA 双链断裂的机制
  • 批准号:
    10321228
  • 财政年份:
    2020
  • 资助金额:
    $ 32.63万
  • 项目类别:
Mechanism and Fidelity of RAG mediated DNA recombination
RAG介导的DNA重组的机制和保真度
  • 批准号:
    10623258
  • 财政年份:
    2020
  • 资助金额:
    $ 32.63万
  • 项目类别:
Single-molecule studies of Theta mediated end joining
Theta 介导的末端连接的单分子研究
  • 批准号:
    10468632
  • 财政年份:
    2020
  • 资助金额:
    $ 32.63万
  • 项目类别:
Single-molecule studies of Theta mediated end joining
Theta 介导的末端连接的单分子研究
  • 批准号:
    10640902
  • 财政年份:
    2020
  • 资助金额:
    $ 32.63万
  • 项目类别:
Mechanism and Fidelity of RAG mediated DNA recombination
RAG介导的DNA重组的机制和保真度
  • 批准号:
    10188416
  • 财政年份:
    2020
  • 资助金额:
    $ 32.63万
  • 项目类别:
Mechanism and Fidelity of RAG mediated DNA recombination
RAG介导的DNA重组的机制和保真度
  • 批准号:
    10025821
  • 财政年份:
    2020
  • 资助金额:
    $ 32.63万
  • 项目类别:
Single-molecule studies of Theta mediated end joining
Theta 介导的末端连接的单分子研究
  • 批准号:
    10202523
  • 财政年份:
    2020
  • 资助金额:
    $ 32.63万
  • 项目类别:
Mechanisms of Human DNA Double-Strand Break Repair via Quantitative Single-Molecule Imaging
通过定量单分子成像修复人类 DNA 双链断裂的机制
  • 批准号:
    10536668
  • 财政年份:
    2020
  • 资助金额:
    $ 32.63万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了