Intersection of Upregulated BMP Signaling & Cellular Mechanotransduction in fibrodysplasia ossificans progressiva (FOP)
上调 BMP 信号转导的交叉点
基本信息
- 批准号:9257232
- 负责人:
- 金额:$ 4.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:ACVR1 geneAbnormal CellActinsAffectAlpha CellAreaAtomic Force MicroscopyBiomechanicsBlast CellBone Morphogenetic ProteinsCartilageCell Differentiation processCell LineageCell Surface ReceptorsCell modelCell surfaceCellsCellular MechanotransductionCellular MorphologyChondrogenesisChromatinClinicalConnective and Soft TissueCuesDataEmbryoEnvironmentEventFibroblastsGeneticHereditary DiseaseHeterotopic OssificationImpairmentInjuryInterventionLeadLigandsMeasurementMechanicsMechanoreceptorsMediatingMesenchymalMesenchymal Stem CellsMorphologyMusMuscleMuscle satellite cellMutationNatural regenerationOperative Surgical ProceduresOsteogenesisPathologicPathway interactionsPatientsPerceptionPharmacologic SubstancePhysical environmentPlayPopulationProcessProliferatingReceptor SignalingReplacement ArthroplastyResearchRoleSeriesSignal PathwaySignal TransductionSignaling ProteinSiteSkeletal MuscleStress FibersTherapeuticTissuesTransplantationbonebone cellcartilage cellexperimental studygain of functiongain of function mutationgene inductionin vivoinjuredinsightlipid biosynthesismechanotransductionmouse modelmuscle regenerationmyogenesisnon-geneticosteogenicprogenitorprogressive myositis ossificansreceptorreceptor functionrepairedresponseresponse to injuryrhorhoA GTP-Binding Proteinsoft tissuestem cellstherapeutic targettissue regenerationtissue traumawound healing
项目摘要
Project Summary
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by the formation of
extra-skeletal bone known as heterotopic ossification (HO). HO is caused by a series of cellular and tissue-
wide events that lead to bone formation within skeletal muscle and other soft connective tissues. All familial
and sporadic cases with a classic clinical presentation of FOP carry a gain-of-function heterozygous mutation
in ACVR1 (R206H; c.617G>A), a cell surface receptor that mediates bone morphogenetic protein (BMP)
signaling, which has been recognized for its chondro- and osteogenic-induction potential. The heterotopic bone
that forms in FOP patients is qualitatively normal endochondral bone, however initiation of this bone formation
occurs as a result of misdirected cell fate decisions within the affected tissue. HO can form both spontaneously
and after injury to the muscle or other soft connective tissue. In addition to ligand-receptor signaling,
mechanical cues derived from the physical environment also direct cell fate decisions, with stiff substrates
promoting chondrogenic and osteogenic fates and softer substrates promoting neurogenic, adipogenic, and
myogenic cell fates. We have observed increased activation of cellular mechanotransduction in progenitor cells
harboring the FOP mutation.
This proposal seeks to identify the influence of elevated BMP signaling conferred by the Acvr1R206H mutation on
cellular mechanical signal transduction (also known as mechanotransduction) and how it affects the ability of
muscle stem cells (MuSCs) to regenerate skeletal muscle after injury. I will first determine whether elevated
BMP signaling in Acvr1R206H cells interacts with mechanical signaling pathways to alter response to substrate
stiffness leading to aberrant cell fate decisions by mesenchymal stem cells (MSCs) (Aim 1). I will also
investigate the effect of the Acvr1R206H mutation on the ability of a muscle tissue cell population, muscle stem
cells (MuSCs), to repair damaged skeletal muscle tissue (Aim 2). While FOP is a rare genetic disease, HO is a
common pathological response to severe tissue trauma scenarios such as blast-initiated injuries and joint-
replacement surgeries. Developing a better understanding of HO from a genetic perspective could provide
insight into the aberrant mechanisms regulating bone formation and provide targets for pharmaceutical
intervention in both genetic and non-genetic causes of HO. Additionally, insights gained from this study will
provide us with a better understanding of cellular mechanotransduction and its role in muscle regeneration
after injury.
项目概要
进行性骨化性纤维发育不良 (FOP) 是一种罕见的遗传性疾病,其特征是形成
骨骼外的骨称为异位骨化(HO)。 HO 是由一系列细胞和组织引起的
导致骨骼肌和其他软结缔组织内骨形成的广泛事件。所有家庭成员
具有 FOP 典型临床表现的散发病例携带功能获得性杂合突变
ACVR1 (R206H; c.617G>A),一种介导骨形态发生蛋白 (BMP) 的细胞表面受体
信号传导,因其软骨和成骨诱导潜力而得到认可。异位骨
FOP 患者中形成的软骨内骨本质上是正常的,但是这种骨形成的起始
这是由于受影响组织内细胞命运决定错误而发生的。 H2O 可以自发形成
以及肌肉或其他软结缔组织受伤后。除了配体-受体信号传导之外,
来自物理环境的机械线索也指导细胞命运的决定,具有坚硬的基质
促进软骨形成和成骨命运以及较软的基质促进神经源性、脂肪形成和
肌原细胞的命运。我们观察到祖细胞中细胞机械转导的激活增加
携带 FOP 突变。
该提案旨在确定 Acvr1R206H 突变赋予的 BMP 信号增强对
细胞机械信号转导(也称为机械转导)及其如何影响细胞的能力
肌肉干细胞(MuSC)在受伤后再生骨骼肌。我首先会确定是否升高
Acvr1R206H 细胞中的 BMP 信号与机械信号通路相互作用以改变对底物的反应
僵硬导致间充质干细胞 (MSC) 做出异常的细胞命运决定(目标 1)。我也会
研究 Acvr1R206H 突变对肌肉组织细胞群、肌肉干能力的影响
细胞 (MuSC),修复受损的骨骼肌组织(目标 2)。 FOP 是一种罕见的遗传病,而 HO 是一种
对严重组织创伤情况的常见病理反应,例如爆炸引发的损伤和关节损伤
置换手术。从遗传学角度更好地理解 H2O 可以提供
深入了解调节骨形成的异常机制并为药物提供靶点
对 HO 的遗传和非遗传原因进行干预。此外,从这项研究中获得的见解将
让我们更好地了解细胞力转导及其在肌肉再生中的作用
受伤后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Katherine Stanley其他文献
Alexandra Katherine Stanley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Mechanical sensing mechanism of abnormal cell clusters by surrounding normal cells
周围正常细胞对异常细胞簇的机械传感机制
- 批准号:
20K20189 - 财政年份:2020
- 资助金额:
$ 4.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Rvb1 and Rvb2 are physically and functionally connected during normal and abnormal cell growth
Rvb1 和 Rvb2 在正常和异常细胞生长过程中在物理和功能上相连
- 批准号:
352398 - 财政年份:2016
- 资助金额:
$ 4.4万 - 项目类别:
"Born to be Bad": Is Abnormal Cell Mobility Already Present At Initiation?
“生来就是坏的”:异常的细胞迁移性是否在开始时就已经存在?
- 批准号:
8686657 - 财政年份:2014
- 资助金额:
$ 4.4万 - 项目类别:
Molecular mechanisms of abnormal cell proliferation in acute lymphoblastic leukemia of Down syndrome
唐氏综合征急性淋巴细胞白血病细胞异常增殖的分子机制
- 批准号:
23591527 - 财政年份:2011
- 资助金额:
$ 4.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of abnormal cell polarity in brain tumor cells
脑肿瘤细胞异常细胞极性分析
- 批准号:
21591887 - 财政年份:2009
- 资助金额:
$ 4.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of abnormal cell proliferation in transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome
唐氏综合症短暂性骨髓增生性疾病和急性巨核细胞白血病细胞异常增殖的分子机制
- 批准号:
20591241 - 财政年份:2008
- 资助金额:
$ 4.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of cell adhesion signaling in the abnormal cell polarization of cancer cells
细胞粘附信号在癌细胞异常细胞极化中的作用
- 批准号:
17014055 - 财政年份:2005
- 资助金额:
$ 4.4万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Creation and analysis of animal model monitoring abnormal cell replication
监测异常细胞复制的动物模型的创建和分析
- 批准号:
16380194 - 财政年份:2004
- 资助金额:
$ 4.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Cl^-homeostasis failure and abnormal cell migration by endocrine disruptor cause damage to nervous system
内分泌干扰物导致的Cl^-稳态失灵和异常细胞迁移导致神经系统损伤
- 批准号:
15590207 - 财政年份:2003
- 资助金额:
$ 4.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ROLES OF PLEIOTROPHIN IN NORMAL AND ABNORMAL CELL GROWTH
多效素在正常和异常细胞生长中的作用
- 批准号:
2390859 - 财政年份:1995
- 资助金额:
$ 4.4万 - 项目类别:














{{item.name}}会员




