The Sensory Innervation of the Renal Cortex of Healthy and Hypertensive Mice
健康和高血压小鼠肾皮质的感觉神经支配
基本信息
- 批准号:10215236
- 负责人:
- 金额:$ 3.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-29
- 项目状态:已结题
- 来源:
- 关键词:AblationAffectAfferent NeuronsAnatomyAntihypertensive AgentsAutomobile DrivingCardiovascular systemChemicalsClinical TrialsDOCADataDenervationDevelopmentDevicesDiseaseEfferent NeuronsExcretory functionFamily suidaeFiberFiltrationGlomerular Filtration RateGoalsHealthHeterogeneityHypertensionImageImmunofluorescence ImmunologicIndividualInflammationKidneyKnowledgeLiteratureMaintenanceMapsMeasuresMediatingModelingMusNatureNerveNerve FibersNeuroanatomyNeuronsNeurosciencesNonpharmacologic TherapyOutcomePatientsPeripheralPhysiologicalPhysiologyPlayPopulationPre-Clinical ModelProceduresProcessProteinsProtocols documentationRattusReflex actionRegulationRenal Blood FlowRenal functionRenal pelvisRenovascular HypertensionReporterReportingResearchResistanceResistant HypertensionRodent ModelRoleSensorySodiumSodium ChlorideTRPV1 geneTechniquesTestingTissuesTrainingafferent nervebasecareerexperienceexperimental studyfallshypertension treatmentimprovedkidney cortexnerve supplyneuroregulationnormotensiveoptogeneticspressurepromoterresponsesalt sensitive hypertension
项目摘要
PROJECT SUMMARY
Device-based ablation of renal nerves has emerged as a non-pharmacological therapy for patients with
treatment-resistant hypertension. Recent clinical trials demonstrate it decreases arterial pressure in most
patients with treatment-resistant hypertension, but the neuronal mechanisms mediating this effect are unknown.
This procedure non-selectively destroys both the sensory and sympathetic nerves of the kidney, and despite its
promise, some patients experience a rise, rather than a fall in arterial pressure. One explanation for this
heterogeneity of responses is that different populations of renal nerves play different roles in regulation of arterial
pressure. For example, the extent to which these renal sympathetic and sensory nerves contribute to
hypertension is unclear. The current dogma is that renal sensory nerve fibers are located mainly in the wall of
the renal pelvis and reflexively inhibit sympathetic nerves. This is consistent with the observation that ablation of
these nerves increases arterial pressure in some trials. However, we recently established that renal sensory
nerves also reflexively excite sympathetic nerves, with a decrease in arterial pressure and sympathetic pressor
activity following a sensory-specific chemical renal denervation in the DOCA-salt rat model of renal inflammation
and hypertension. The anatomical distribution of sensory nerves within the kidney has not been extensively
studied, and I have observed abundant sensory fiber localization near the cortical glomeruli of mouse, rat, and
pig kidney that remains largely unreported. There remains a gap in our knowledge of the extent and targets of
this sensory innervation of the renal cortex, and the function of cortical sensory fibers in the modulation of
sympathetic activity. My project aims to investigate these gaps with two complementary goals in both healthy
and DOCA-salt hypertensive mice. First, I will use the tissue-clearing CLARITY procedure, followed by
immunofluorescence to determine the extent of the innervation of glomeruli by sensory fibers. Second, I will
stimulate these sensory fibers within the renal cortex using optogenetics to determine the roles they play in
controlling arterial pressure and kidney function. Based on preliminary results and current literature, my central
hypothesis is that sensory fibers innervate cortical glomeruli and regulate renal function through a sympatho-
excitatory reflex, which is amplified in DOCA-salt HTN. The results of these experiments will lead to a more
complete understanding of sensory renal neuroanatomy and the influences sensory fibers on renovascular
hypertension. Should these sensory fibers located in the cortex prove to function in a sympatho-excitatory
manner, they would represent a promising target for ablation to enhance the anti-hypertensive effects of renal
denervation therapies. This furthers our long-term goal of expanding our understanding of the role of renal nerves
in the development and maintenance of hypertension to help guide ablative and neuromodulatory renal nerve-
based treatments.
项目摘要
肾神经的基于器械的消融已经成为一种非药物治疗,用于患有肾功能不全的患者。
难治性高血压最近的临床试验表明,它可以降低大多数人的动脉压。
难治性高血压患者,但介导这种效应的神经元机制尚不清楚。
该手术非选择性地破坏肾脏的感觉神经和交感神经,尽管其
一些患者经历的是动脉压的上升,而不是下降。对此的一种解释
反应的异质性是不同的肾神经群在动脉调节中起不同的作用,
压力例如,这些肾交感神经和感觉神经在多大程度上有助于
高血压尚不清楚。目前的教条是,肾感觉神经纤维主要位于血管壁中。
肾盂反射性抑制交感神经这与观察结果一致,
这些神经在某些试验中会增加动脉压。然而,我们最近发现,肾感觉
神经还反射性地兴奋交感神经,伴随着动脉压和交感神经压的降低。
DOCA-盐大鼠肾脏炎症模型中感觉特异性化学肾脏去神经支配后的活性
和高血压。感觉神经在肾脏内的解剖分布尚未被广泛研究。
研究,我已经观察到丰富的感觉纤维定位附近的皮质肾小球的小鼠,大鼠,
猪肾的研究基本上没有报道。在我们对这一问题的程度和目标的了解方面,
肾皮质的这种感觉神经支配,以及皮质感觉纤维在调节
交感神经活动我的项目旨在调查这些差距,两个互补的目标,在两个健康的
和DOCA盐高血压小鼠。首先,我将使用组织清除程序,然后是
免疫荧光法测定肾小球感觉纤维的神经支配程度。第二,我会
使用光遗传学刺激肾皮质内的这些感觉纤维,以确定它们在
控制动脉血压和肾功能根据初步结果和现有文献,我的中心
假设感觉纤维支配皮质肾小球并通过交感神经调节肾功能,
兴奋性反射,其在DOCA-盐HTN中被放大。这些实验的结果将带来更多
完整了解感觉肾神经解剖和感觉纤维对肾血管的影响,
高血压如果这些位于皮层的感觉纤维被证明在交感神经兴奋中起作用,
以这种方式,它们将代表一种有希望的消融靶点,以增强肾动脉的抗高血压作用。
去神经疗法这进一步推进了我们的长期目标,即扩大我们对肾神经作用的理解。
在高血压的发展和维持中,帮助引导消融和神经调节肾神经-
基于治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Tyshynsky其他文献
Roman Tyshynsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 3.34万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 3.34万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 3.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 3.34万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 3.34万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 3.34万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 3.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 3.34万 - 项目类别:
Studentship