Predicting Binge and Purge Episodes from Passive and Active Apple Watch Data Using a Dynamical Systems Approach

使用动态系统方法根据被动和主动 Apple Watch 数据预测狂欢和清除事件

基本信息

  • 批准号:
    10215486
  • 负责人:
  • 金额:
    $ 70.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-23 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Bulimia nervosa (BN) and binge eating disorder (BED) are life-interrupting and associated with significant impairment. Via a unique opportunity that allowed us to adapt the widely used cognitive-behavioral based app Recovery Record for use on 1000 Apple Watches, we propose to optimize two domains of data being collected over a 30-day period in 1000 individuals with bulimia nervosa (BN) or binge-eating disorder (BED). This proposal augments a parent study [Binge Eating Genetics INitiative (BEGIN)], supported by NIMH (saliva kits for DNA at no cost). We will collect longitudinal passive sensor data via native applications in the Apple Watch and active data on binge-eating, purging, nutrition, mood, and cognitions using Recovery Record adapted for the Apple Watch. We will combine sensor-based measurements of autonomic nervous system (ANS) activity, actigraphy, and geolocation with active Recovery Record measures to characterize real world conditions under which individuals are more/less likely to binge and/or purge in their daily lives. Applying dynamical systems analytic approaches, both across and within individuals, we will identify stable, low-risk, and high-risk patterns that will enable the prediction of transition to high risk epochs that signal impending binge or purge episodes. Our work will provide an empirical foundation for transcending current cognitive- behavioral therapy approaches that are dependent on self-report (often retrospective) of high risk states, will enhance the understanding of eating disorders in terms of regulation, and will yield a personalized precision medicine approach to eating disorders treatment. Efficient and reliable quantitative characterization is the essential first step in the development of real-time interventions driven by automated recognition of individualized transitions into high-risk periods for disordered eating behaviors. Our aims are: 1) To predict the occurrence of binge eating and purging episodes in individuals with BN or BED with passive sensor data; 2) To test theoretically-derived regulatory models of binge eating and purging as reflected in differences in temporal patterns; and 3) To refine our capacity to predict high risk states by augmenting passive data with contextual factors collected by Recovery Record. This proposal optimizes the richness and longitudinal structure of the deep phenotypic data collected in BEGIN to lay the foundation for the next translational step in which we will develop personalized just-in-time interventions that can disrupt eating disorders behaviors in real time before they occur.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CYNTHIA M BULIK其他文献

CYNTHIA M BULIK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CYNTHIA M BULIK', 18)}}的其他基金

Genetic Architecture of Avoidant/Restrictive Food Intake Disorder
回避/限制性食物摄入障碍的遗传结构
  • 批准号:
    10625586
  • 财政年份:
    2022
  • 资助金额:
    $ 70.6万
  • 项目类别:
Genetic Architecture of Avoidant/Restrictive Food Intake Disorder
回避/限制性食物摄入障碍的遗传结构
  • 批准号:
    10684064
  • 财政年份:
    2022
  • 资助金额:
    $ 70.6万
  • 项目类别:
1/7 PGC: Advancing Discovery and Impact
1/7 PGC:推进发现和影响
  • 批准号:
    10612491
  • 财政年份:
    2021
  • 资助金额:
    $ 70.6万
  • 项目类别:
1/7 PGC: Advancing Discovery and Impact
1/7 PGC:推进发现和影响
  • 批准号:
    10392847
  • 财政年份:
    2021
  • 资助金额:
    $ 70.6万
  • 项目类别:
1/7 PGC: Advancing Discovery and Impact
1/7 PGC:推进发现和影响
  • 批准号:
    10096423
  • 财政年份:
    2021
  • 资助金额:
    $ 70.6万
  • 项目类别:
Predicting Binge and Purge Episodes from Passive and Active Apple Watch Data Using a Dynamical Systems Approach
使用动态系统方法根据被动和主动 Apple Watch 数据预测狂欢和清除事件
  • 批准号:
    10021708
  • 财政年份:
    2019
  • 资助金额:
    $ 70.6万
  • 项目类别:
Predicting Binge and Purge Episodes from Passive and Active Apple Watch Data Using a Dynamical Systems Approach
使用动态系统方法根据被动和主动 Apple Watch 数据预测狂欢和清除事件
  • 批准号:
    10452494
  • 财政年份:
    2019
  • 资助金额:
    $ 70.6万
  • 项目类别:
Eating Disorders Genetics Initiative (EDGI)
饮食失调遗传学倡议 (EDGI)
  • 批准号:
    10013291
  • 财政年份:
    2019
  • 资助金额:
    $ 70.6万
  • 项目类别:
Eating Disorders Genetics Initiative (EDGI)
饮食失调遗传学倡议 (EDGI)
  • 批准号:
    10206007
  • 财政年份:
    2019
  • 资助金额:
    $ 70.6万
  • 项目类别:
Eating Disorders Genetics Initiative (EDGI)
饮食失调遗传学倡议 (EDGI)
  • 批准号:
    10425368
  • 财政年份:
    2019
  • 资助金额:
    $ 70.6万
  • 项目类别:

相似海外基金

Apple Watch用胸骨圧迫フィードバックアプリの開発とその効果の検証
为Apple Watch开发胸外按压反馈应用程序并验证其有效性
  • 批准号:
    22K10644
  • 财政年份:
    2022
  • 资助金额:
    $ 70.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
心房細動アブレーション術後におけるApple watchを応用した新たな抗凝固療法
房颤消融后使用 Apple Watch 进行新的抗凝治疗
  • 批准号:
    22K20857
  • 财政年份:
    2022
  • 资助金额:
    $ 70.6万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Predicting Binge and Purge Episodes from Passive and Active Apple Watch Data Using a Dynamical Systems Approach
使用动态系统方法根据被动和主动 Apple Watch 数据预测狂欢和清除事件
  • 批准号:
    10021708
  • 财政年份:
    2019
  • 资助金额:
    $ 70.6万
  • 项目类别:
Predicting Binge and Purge Episodes from Passive and Active Apple Watch Data Using a Dynamical Systems Approach
使用动态系统方法根据被动和主动 Apple Watch 数据预测狂欢和清除事件
  • 批准号:
    10452494
  • 财政年份:
    2019
  • 资助金额:
    $ 70.6万
  • 项目类别:
Apple Watch Development project
Apple Watch 开发项目
  • 批准号:
    477815-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 70.6万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了