Mechanisms to move and steer chromosomes
移动和操纵染色体的机制
基本信息
- 批准号:10214634
- 负责人:
- 金额:$ 32.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAnaphaseBacteriaBehaviorBindingBiological AssayCENP-E proteinCell divisionCellsCellular biologyChromatidsChromosomesComplexCoupledDevelopmentDrug TargetingEnsureEukaryotaEventFamilyFeedbackFluorescence Resonance Energy TransferFutureGenerationsGenetic MaterialsGenomic InstabilityGoutHarvestHumanHuman ChromosomesIn VitroKinesinKinetochoresLigationMalignant NeoplasmsMeasuresMechanicsMetaphaseMetaphase PlateMethodsMicrotubule DepolymerizationMicrotubule PolymerizationMicrotubulesMitosisMitotic spindleModelingMotorMovementNamesNaturePathway interactionsPharmaceutical PreparationsPhosphorylationPlasmidsPlus End of the MicrotubulePolymersPower strokeProcessPrometaphaseProteinsRegulatory PathwayRelapseSignal TransductionSisterSlideStructureSystemTestingTherapeuticTubulinVinca AlkaloidsWorkYeastsarmcalponincancer cellchemotherapychromosome movementdepolymerizationdimerexperimental studyfootfungusin vivomutantpolymerizationsegregationsingle moleculetaxanetomography
项目摘要
Project Summary/Abstract
We will elucidate the mechanisms that power the movements of chromosomes on the mitotic spindle and the
mechanisms that control the direction of these movements. Fungi use the ring shaped Dam1 complex, which
works with multiple “arm-like” Ndc80 complexes to move chromosomes. This ring can be pushed poleward by
a “power stroke” generated when depolymerizing microtubules curve at the plus end to power the movement of
chromosomes. However, it is unclear how most eukaryotes, including humans, power chromosome movement
since they lack the Dam1 ring complex. We visualized purified human Ndc80 and Ska complexes on
microtubules by EM tomography to elucidate the structure of the human kinetochore-microtubule attachment.
These new structures orient Ska on microtubules and also suggest Ndc80 complexes oligomerize on
microtubules to form a structure we have named the “sliding foot”. This new structure suggests testable
mechanisms for how metazoans kinetochores are pushed by the curvature of a depolymerizing microtubule
like yeast. We have developed two in vivo assays that allow us to measure the formation of the sliding feet
and to measure the chromosome movements that require Ska. In addition, we will employ single molecule
assays to measure the requirement of the sliding foot to generate force in vitro. Using these new assays, we
will identify the mechanism that powers the movements of human chromosomes on the mitotic spindle.
Surprisingly, on most chromosomes only one of the two sister kinetochores has sliding feet. This is exciting
because chromosome movements require one sister to actively engage depolymerizing ~20 microtubules to
pull chromosomes, while its sister must passively attach to growing microtubules. We will identify the
regulatory pathways that generate the asymmetry of sliding foot formation on the two sister kinetochores. We
hypothesize that these pathways not only regulate sliding foot formation but can also ensure that one sister
has depolymerizing microtubules while the microtubules bound to its sister kinetochore are polymerizing. We
will build on these findings to identify the mechanisms that direct chromosome movements either towards or
away from poles on the mitotic spindle.
It is important to understand these basic mechanisms that lie at the center of the chromatid segregation to
determine how cancer cells lower the fidelity of mitosis to generate genomic instability and to increase the
efficacy of anti-tubulin chemotherapeutics.
项目总结/摘要
我们将阐明有丝分裂纺锤体上染色体运动的动力机制,
控制这些运动方向的机制。真菌使用环形Dam 1复合体,
与多个“臂状”Ndc 80复合物一起工作以移动染色体。这个环可以被推向极点,
当解聚微管在正端弯曲时产生的“动力冲程”为微管的运动提供动力,
染色体然而,目前还不清楚大多数真核生物,包括人类,如何动力染色体运动
因为他们缺少Dam 1环复合体我们将纯化的人Ndc 80和Ska复合物在
通过EM断层扫描来观察微管,以阐明人运动舞蹈微管附着的结构。
这些新的结构将Ska定位在微管上,也表明Ndc 80复合物在微管上寡聚化。
微管形成一种我们称之为“滑足”的结构。这种新结构表明可测试
后生动物动粒如何被解聚微管的曲率推动的机制
就像酵母。我们已经开发了两种体内试验,使我们能够测量滑动脚的形成
并测量需要斯卡的染色体运动。此外,我们将采用单分子
测定以测量滑动脚在体外产生力的需求。使用这些新的检测方法,我们
将确定驱动人类染色体在有丝分裂纺锤体上运动的机制。
令人惊讶的是,在大多数染色体上,两个姐妹动粒中只有一个有滑动脚。这是令人兴奋
因为染色体运动需要一个姐妹主动解聚~20个微管,
拉染色体,而它的姐妹必须被动地附着在生长的微管上。我们将确定
在两个姐妹动粒上产生滑动足形成的不对称性的调节途径。我们
假设这些通路不仅调节滑足的形成,
在微管与其姐妹动粒结合的同时,微管发生解聚。我们
将建立在这些发现,以确定机制,直接染色体运动,无论是向或
远离有丝分裂纺锤体的两极
了解这些位于染色单体分离中心的基本机制,
确定癌细胞如何降低有丝分裂的保真度,以产生基因组不稳定性,
抗微管蛋白化学治疗剂的功效。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Condensed View of the Chromosome Passenger Complex.
- DOI:10.1016/j.tcb.2020.06.005
- 发表时间:2020-07
- 期刊:
- 影响因子:19
- 作者:Prasad D. Trivedi;P. Stukenberg
- 通讯作者:Prasad D. Trivedi;P. Stukenberg
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
P. TODD STUKENBERG其他文献
P. TODD STUKENBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('P. TODD STUKENBERG', 18)}}的其他基金
Robust-to-fragile transitions of a phase-separated mitotic organelle in triple-negative breast cancer
三阴性乳腺癌相分离有丝分裂细胞器的稳健到脆弱的转变
- 批准号:
10525282 - 财政年份:2022
- 资助金额:
$ 32.3万 - 项目类别:
Robust-to-fragile transitions of a phase-separated mitotic organelle in triple-negative breast cancer
三阴性乳腺癌相分离有丝分裂细胞器的稳健到脆弱的转变
- 批准号:
10703476 - 财政年份:2022
- 资助金额:
$ 32.3万 - 项目类别:
Robust-to-fragile transitions of a phase-separated mitotic organelle in triple-negative breast cancer
三阴性乳腺癌相分离有丝分裂细胞器的稳健到脆弱的转变
- 批准号:
10907877 - 财政年份:2022
- 资助金额:
$ 32.3万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Research Grant