Leveraging Twitter to Monitor Nicotine and Tobacco Cancer Communication
利用 Twitter 监控尼古丁和烟草癌症的交流
基本信息
- 批准号:10214567
- 负责人:
- 金额:$ 11.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2022-07-10
- 项目状态:已结题
- 来源:
- 关键词:AdolescentAffectAlgorithmsAttitudeBehavioralBehavioral SciencesCancer ControlCategoriesCharacteristicsCigaretteCodeCollaborationsCommunicationCommunitiesComplexComputational LinguisticsComputational algorithmComputer softwareComputersCountyDataDisease OutbreaksElectronic cigaretteEpidemiologic MethodsEventFoodFootball gameFutureGoldHealthHealth Care CostsIndividualInfluenza A Virus, H1N1 SubtypeInterventionLawsLinguisticsLiteratureMalignant NeoplasmsMarketingMethodologyMethodsModelingMonitorMorbidity - disease rateNamesNatural Language ProcessingNicotineOutcomePatternPoliciesPrivacyProcessPublic HealthPublic OpinionResearchResearch PersonnelResourcesRetrievalRiskSamplingScientistSecuritySpecificityStructureTechniquesTestingTimeTime Series AnalysisTobaccoTobacco useTwitterWorkautomated analysisbasebiomedical informaticscancer preventioncomputer programcomputer sciencecomputerized toolsdata standardsdata streamsethnic minority populationgeographic differencehookahimprovedinfluenza outbreakinterestmachine learning algorithmmortalitymultidisciplinarynicotine usenovelopen sourcephrasesprospectiveracial minoritysocialsocial mediasoftware developmentstatisticssubstance usetime usetobacco productstooltrendvapingyoung adult
项目摘要
Patterns in Twitter data have revolutionized understanding of public health events such as influenza outbreaks.
While researchers have begun to examine messaging related to substance use on Twitter, this project will
strengthen the use of Twitter as an infoveillance tool to more rigorously examine nicotine, tobacco, and cancer-
related communication. Twitter is particularly suited to this work because its users are commonly adolescents,
young adults, and racial and ethnic minorities, all of whom are at increased risk for nicotine and tobacco
product (NTP) use and related health consequences. Additionally, due to the openness of the platform,
searches are replicable and transparent, enabling large-scale systematic research. Therefore, our
multidisciplinary team of experts in diverse relevant fields—including public health, behavioral science,
computational linguistics, computer science, biomedical informatics, and information privacy and security—will
build upon our previous research to develop and validate structured algorithms providing automated
surveillance of Twitter’s multifaceted and continuously evolving information related to NTPs. First, we will
qualitatively assess a stratified random sample of relevant NTP-related tweets for specific coded variables,
such as the message’s primary sentiment and other key information of potential value (e.g., whether a
message involves buying/selling, policy/law, and cancer-related communication). Tweets will be obtained
directly from Twitter using software we developed that leverages a comprehensive list of Twitter-optimized
search strings related to NTPs. Second, we will statistically determine what message characteristics (e.g., the
presence of certain words, punctuation, and/or structures) are most strongly associated with each of the coded
variables for each search string. Using this information, we will create specialized Machine Learning (ML)
algorithms based on state-of-the-art methods from Natural Language Processing (NLP) to automatically
assess and categorize future Twitter data. Third, we will use this information to provide automatic assessment
of current and future streaming data. Time series analyses using seasonal Auto-Regressive Integrated Moving
Averages (ARIMA) will determine if there are significant changes over time in volume of messaging related to
each specific coded variables of interest. Trends will be examined at the daily, weekly, and monthly level,
because each of these levels is potentially valuable for intervention. To maximize the translational value of this
project, we will partner with public health department stakeholders who are experts in streamlining
dissemination of actionable trends data. In summary, this project will substantially advance our understanding
of representations of NTPs on social media—as well as our ability to conduct automated surveillance and
analysis of this content. This project will result in important and concrete deliverables, including open-source
algorithms for future researchers and processes to quickly disseminate actionable data for tailoring community-
level interventions.
Twitter数据中的模式已彻底改变了人们对公共卫生事件(例如影响力爆发)的理解。
尽管研究人员已经开始检查Twitter上与药物使用有关的消息传递,但该项目将
加强将Twitter用作不受欢迎的工具,以更严格地检查尼古丁,烟草和癌症 -
相关沟通。 Twitter特别适合这项工作,因为其用户通常是青少年,
年轻人以及种族和少数族裔,他们的尼古丁和烟草风险增加
产品(NTP)使用和相关的健康后果。此外,由于平台的开放性,
搜索是可复制和透明的,可以实现大规模的系统研究。因此,我们的
潜水领域专家的多学科团队 - 包括公共卫生,行为科学,
计算语言学,计算机科学,生物医学信息以及信息隐私和安全性 - 将会
基于我们先前的研究,以开发和验证提供自动化的结构化算法
对Twitter的多方面且不断发展的信息的监视与NTP有关。首先,我们会的
定性评估针对特定编码变量的相关NTP相关推文的分层随机样本,
例如消息的主要情感和潜在价值的其他关键信息(例如,是否a
消息涉及买入/销售,政策/法律和与癌症有关的沟通)。推文将获得
直接从Twitter使用软件,我们开发了一个充分利用Twitter优化的列表
搜索字符串与NTP有关。其次,我们将从统计上确定哪些消息特征(例如
某些单词,标点符号和/或结构的存在与每个编码都最密切相关
每个搜索字符串的变量。使用此信息,我们将创建专业的机器学习(ML)
基于自然语言处理(NLP)到自动的最新方法的算法
评估并分类未来的Twitter数据。第三,我们将使用此信息提供自动评估
当前和将来的流数据。时间序列分析使用季节性自动回归整合运动
平均值(Arima)将确定随着时间的流逝,与
每个感兴趣的特定编码变量。趋势将在每日,每周和每月的水平上进行检查,
因为这些级别中的每个级别都可能对干预有价值。为了最大化这一点的翻译价值
项目,我们将与精简专家的公共卫生部门利益相关者合作
传播可行的趋势数据。总而言之,该项目将大大提高我们的理解
NTP在社交媒体上的代表 - 以及我们进行自动监视和
该内容的分析。该项目将导致重要和具体的可交付成果,包括开源
未来研究人员和流程的算法,以快速传播可行的数据以量身定制社区 -
水平干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian A. Primack其他文献
149. “Why Do People Pee In The JUUL Room?”: Analyzing Messages About JUUL Use On Twitter
- DOI:
10.1016/j.jadohealth.2018.10.165 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:
- 作者:
Jaime E. Sidani;Jason B. Colditz;Kar-Hai Chu;Erica L. Barrett;Brian A. Primack - 通讯作者:
Brian A. Primack
Leveraging Digital Media to Promote Youth Mental Health: Flipping the Script on Social Media-Related Risk
利用数字媒体促进青少年心理健康:扭转社交媒体相关风险的局面
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jessica L. Hamilton;John Torous;Hannah S. Szlyk;C. Biernesser;K. P. Kruzan;Michaeline Jensen;Jazmin Reyes;Brian A. Primack;Jamie Zelazny;Paul Weigle - 通讯作者:
Paul Weigle
58. Emotional Support From Social Media And In-Person Relationships: Associations With Depressive Symptoms Among Young Adults
- DOI:
10.1016/j.jadohealth.2018.10.073 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:
- 作者:
Ariel Shensa;Jaime E. Sidani;Cesar G. Escobar-Viera;Brian A. Primack - 通讯作者:
Brian A. Primack
Brian A. Primack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian A. Primack', 18)}}的其他基金
Leveraging Twitter to monitor nicotine and tobacco-related cancer communication
利用 Twitter 监控尼古丁和烟草相关癌症的传播
- 批准号:
9503469 - 财政年份:2018
- 资助金额:
$ 11.25万 - 项目类别:
Sponsored Health IT and Evidence-Based Prescribing among Medical Residents
赞助住院医生的健康信息技术和循证处方
- 批准号:
8680863 - 财政年份:2014
- 资助金额:
$ 11.25万 - 项目类别:
Improving U.S. health policy regarding water-pipe tobacco smoking
改善美国有关水烟吸烟的卫生政策
- 批准号:
8690307 - 财政年份:2014
- 资助金额:
$ 11.25万 - 项目类别:
Improving U.S. health policy regarding water-pipe tobacco smoking
改善美国有关水烟吸烟的卫生政策
- 批准号:
8929177 - 财政年份:2014
- 资助金额:
$ 11.25万 - 项目类别:
Cessation in Non-Daily Smokers: A RCT of NRT with Ecological Momentary Assessment
非日常吸烟者的戒烟:NRT 的随机对照试验及生态瞬时评估
- 批准号:
8734360 - 财政年份:2013
- 资助金额:
$ 11.25万 - 项目类别:
Cessation in Non-Daily Smokers: A RCT of NRT with Ecological Momentary Assessment
非日常吸烟者的戒烟:NRT 的随机对照试验及生态瞬时评估
- 批准号:
8913105 - 财政年份:2013
- 资助金额:
$ 11.25万 - 项目类别:
Waterpipe Tobacco Smoking among U.S. Adolescents and Young Adults
美国青少年和年轻人吸水烟的情况
- 批准号:
8477008 - 财政年份:2010
- 资助金额:
$ 11.25万 - 项目类别:
Waterpipe Tobacco Smoking among U.S. Adolescents and Young Adults
美国青少年和年轻人吸水烟的情况
- 批准号:
7885094 - 财政年份:2010
- 资助金额:
$ 11.25万 - 项目类别:
Waterpipe Tobacco Smoking among U.S. Adolescents and Young Adults
美国青少年和年轻人吸水烟的情况
- 批准号:
8796436 - 财政年份:2010
- 资助金额:
$ 11.25万 - 项目类别:
Waterpipe Tobacco Smoking among U.S. Adolescents and Young Adults
美国青少年和年轻人吸水烟的情况
- 批准号:
8857109 - 财政年份:2010
- 资助金额:
$ 11.25万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
- 批准号:
10752053 - 财政年份:2023
- 资助金额:
$ 11.25万 - 项目类别:
Frontal-thalamo-cerebellar circuitry of attention deficit via imaging-genetic-environmental analyses
通过成像-遗传-环境分析观察注意力缺陷的额叶-丘脑-小脑回路
- 批准号:
10737357 - 财政年份:2023
- 资助金额:
$ 11.25万 - 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
$ 11.25万 - 项目类别:
Identifying Metabolic and Psychosocial Antecedents and Characteristics of youth-onset Type 2 diabetes (IMPACT DM)
确定青年发病 2 型糖尿病 (IMPACT DM) 的代谢和心理社会因素和特征
- 批准号:
10584028 - 财政年份:2023
- 资助金额:
$ 11.25万 - 项目类别: