Macromolecular interactions controlling the ALA synthases, keystone enzymes that initiate heme biosynthesis

控制 ALA 合成酶(启动血红素生物合成的关键酶)的大分子相互作用

基本信息

  • 批准号:
    10214597
  • 负责人:
  • 金额:
    $ 41.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Heme is the oxygen-binding ligand of hemoglobin and is an essential cofactor or sensor element in many proteins. Heme production must be tightly controlled to adequately supply these functions but to avoid overproduction, as accumulation of free heme and heme precursors is toxic. The first committed step in heme biosynthesis is the condensation of glycine and succinyl-CoA to yield 5-aminolevulinic acid (ALA). This reaction is catalyzed by ALA synthase (ALAS), which uses pyridoxal 5ʹ-phosphate (PLP, the active form of vitamin B6) as an essential cofactor. In animals, there are two differentially expressed ALAS isoforms. ALAS1 is present in most cells, whereas ALAS2 is an erythroid-specific enzyme that is dramatically upregulated during red cell development. In humans, mutations in ALAS2 cause two diseases: (1) X-linked sideroblastic anemia (XLSA) when enzyme activity is too low to support healthy levels of heme production and erythropoiesis and (2) Erythroid X-linked protoporphyria (XLPP), from gain-of-function ALAS2 mutations that overproduce ALA, causing build up of toxic heme biosynthetic intermediates. The life cycle of ALAS is tightly regulated at steps including mitochondrial import and protein turnover. Both these steps are feedback controlled by heme-binding. Enzyme activity (and/or stability) is also regulated and these processes are affected by interaction with other enzymes, including Lon protease, succinyl-CoA synthetase (SCS), and perhaps ferrochelatase (FECH), the final two also critical enzymes in heme synthesis. Importantly, we recently discovered that ALAS activity is also dramatically stimulated by mitochondrial ClpX (mtClpX), a member of the AAA+ family of protein unfoldases. The mtClpX energy-dependent unfoldase accelerates incorporation of PLP into ALAS and CLPX depletion causes anemia in vertebrates. We also solved structures of both PLP-free ALAS (from yeast) and the active PLP-bound enzyme, which illuminates the conformational changes coupled to PLP incorporation and provides important information for understanding mtClpX-promoted loading of PLP. These structures also provide the first observation of the eukaryotic-specific regulatory C-terminal domain of the enzyme. This domain structure suggests testable mechanisms to explain the XLPP mutations and contains the binding site for SCS, which we will further study. Continuing to investigate how mtClpX physically interacts with ALAS and to test models for the mechanism of PLP-loading holds promise for uncovering a link between mtClpX-ALAS2 interactions and some classes of XLSA alleles. In another recent, exciting breakthrough, our collaborators discovered a dominant human CLPX mutation that appears to hyperactivate ALAS, leading to mtClpX-linked erythropoietic protoporphyria (EPP). The mechanistic basis of this disease will be scrutinized at the molecular, structural and cellular level. Thus, by probing the complex mechanisms that control ALAS enzymes we will elucidate new molecular means of regulation. We believe that this work, in turn, will inspire novel therapeutic strategies for combating the debilitating illnesses caused by misregulated ALAS.
血红素是血红蛋白的氧结合配体,并且是许多免疫反应中的重要辅因子或传感元件。 proteins.血红素生产必须严格控制,以充分提供这些功能,但要避免 过量生产,因为游离血红素和血红素前体的积累是有毒的。血红素合成的第一步 生物合成是甘氨酸和琥珀酰辅酶A的缩合以产生5-氨基乙酰丙酸(ALA)。该反应 由ALA合成酶(ALAS)催化,该合成酶使用吡哆醛5 β-磷酸(PLP,维生素B6的活性形式) 作为一个重要的辅助因子。在动物中,存在两种差异表达的ALAS同种型。ALAS 1存在于 大多数细胞,而ALAS 2是一种红细胞特异性酶, 发展在人类中,ALAS 2突变导致两种疾病:(1)X连锁铁粒幼细胞性贫血(XLSA) 当酶活性太低而不能支持血红素产生和红细胞生成的健康水平时,以及(2) 红系X连锁原卟啉症(XLPP),来自过度产生ALA的功能获得性ALAS 2突变, 导致有毒血红素生物合成中间体的积累。ALAS的生命周期受到严格控制, 包括线粒体输入和蛋白质周转。这两个步骤都是由血红素结合反馈控制的。 酶的活性(和/或稳定性)也受到调节,并且这些过程受到与其它酶的相互作用的影响。 酶,包括Lon蛋白酶,琥珀酰辅酶A合成酶(SCS),可能还有亚铁螯合酶(FECH), 最后两个也是血红素合成的关键酶。重要的是,我们最近发现,ALAS活动也是 线粒体ClpX(mtClpX)是AAA+蛋白质解折叠酶家族的成员。 mtClpX能量依赖性解折叠酶加速PLP掺入ALAS和CLPX耗尽 导致脊椎动物贫血我们还解析了无PLP的ALAS(来自酵母)和活性肽的结构。 PLP结合酶,其阐明了与PLP掺入偶联的构象变化,并提供了 这是理解mtClpX促进的PLP装载的重要信息。这些结构还提供了 第一次观察到的真核生物特异性调控C-末端结构域的酶。这种域结构 提出了可测试的机制来解释XLPP突变,并包含SCS的结合位点,我们 将进一步研究。继续研究mtClpX如何与ALAS物理相互作用,并测试模型 PLP加载机制有望揭示mtClpX-ALAS 2相互作用之间的联系, 一些XLSA等位基因的类别。在最近另一个令人兴奋的突破中,我们的合作者发现了一种 显性人类CLPX突变似乎过度激活ALAS,导致mtClpX连锁的红细胞生成 原卟啉症(EPP)。这种疾病的机制基础将在分子,结构和 细胞水平。因此,通过探索控制ALAS酶的复杂机制,我们将阐明新的 分子调控手段。我们相信,这项工作,反过来,将激发新的治疗策略, 对抗由ALAS失调引起的衰弱性疾病。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lon degrades stable substrates slowly but with enhanced processivity, redefining the attributes of a successful AAA+ protease.
  • DOI:
    10.1016/j.celrep.2023.113061
  • 发表时间:
    2023-09-26
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
  • 通讯作者:
Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis.
The yeast ALA synthase C-terminus positively controls enzyme structure and function.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TANIA A BAKER其他文献

TANIA A BAKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TANIA A BAKER', 18)}}的其他基金

Macromolecular interactions controlling the ALA synthases, keystone enzymes that initiate heme biosynthesis
控制 ALA 合成酶(启动血红素生物合成的关键酶)的大分子相互作用
  • 批准号:
    9752583
  • 财政年份:
    2017
  • 资助金额:
    $ 41.73万
  • 项目类别:
BASIS OF SUBSTRATE SELECTION BY BACTERIAL ADAPTOR PROTEINS
细菌衔接蛋白选择底物的基础
  • 批准号:
    8169213
  • 财政年份:
    2010
  • 资助金额:
    $ 41.73万
  • 项目类别:
ADAPTOR-PROTEIN MEDIATED RECOGNITION AND REGULATION OF PROTEIN DEGRADATION
接头蛋白介导的蛋白质降解的识别和调节
  • 批准号:
    7955083
  • 财政年份:
    2009
  • 资助金额:
    $ 41.73万
  • 项目类别:
THE RESPONSE REGULATOR-LIKE DOMAIN OF RSSB
RSSB 的类似响应调节器的域
  • 批准号:
    7721245
  • 财政年份:
    2008
  • 资助金额:
    $ 41.73万
  • 项目类别:
STRUCTURE AND FUNCTION OF THE CLPXP ATP-DEPENDENT PROTEASE
CLPXP ATP 依赖性蛋白酶的结构和功能
  • 批准号:
    7721201
  • 财政年份:
    2008
  • 资助金额:
    $ 41.73万
  • 项目类别:
STRUCTURE AND FUNCTION OF THE CLPXP ATP-DEPENDENT PROTEASE
CLPXP ATP 依赖性蛋白酶的结构和功能
  • 批准号:
    7182916
  • 财政年份:
    2005
  • 资助金额:
    $ 41.73万
  • 项目类别:
STRUCTURE OF THE CLPX ATPASE
CLPX ATP酶的结构
  • 批准号:
    7182944
  • 财政年份:
    2005
  • 资助金额:
    $ 41.73万
  • 项目类别:
STRUCTURE AND FUNCTION OF THE CLPXP ATP-DEPENDENT PROTEASE
CLPXP ATP 依赖性蛋白酶的结构和功能
  • 批准号:
    7369492
  • 财政年份:
    2005
  • 资助金额:
    $ 41.73万
  • 项目类别:
THE RESPONSE REGULATOR-LIKE DOMAIN OF RSSB
RSSB 的类似响应调节器的域
  • 批准号:
    7369536
  • 财政年份:
    2005
  • 资助金额:
    $ 41.73万
  • 项目类别:
STRUCTURE/FUNCTION OF THE CLPXP ATP-DEPENDENT PROTEASE
CLPXP ATP 依赖性蛋白酶的结构/功能
  • 批准号:
    6972755
  • 财政年份:
    2004
  • 资助金额:
    $ 41.73万
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了