Computational Genomic Epidemiology of Cancer (CoGEC) Training Program
癌症计算基因组流行病学 (CoGEC) 培训计划
基本信息
- 批准号:10215403
- 负责人:
- 金额:$ 30.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract
Undertaking innovative cancer research requires input from teams of scientists with a mixture of backgrounds,
including molecular biology, oncology, medicine, epidemiology, biostatistics, genomics/genetics,
bioinformatics, and computer science. Researchers with interdisciplinary training across these fields are
extremely valuable to such teams, as they can act as conduits for the integrated work necessary to accomplish
some of the most promising and forward-looking cancer research. Due to the exclusive nature of training within
these fields, however, there are limited opportunities for investigators to obtain the knowledge that bridges
these disciplines. To help remedy this problem, we propose here the continuation of this T32 program to
provide postdoctoral Training in the Computational Genomic Epidemiology of Cancer (CoGEC) at Case
Comprehensive Cancer Center. This program defines a novel, transdisciplinary area of training at the
intersection of cancer research, epidemiology, biostatistics, genetics, and computer science. The program’s
structure is defined by three key requirements. First, all trainees will take a specialized core curriculum of five
courses that cover the individual disciplines as well as their intersections . Second, the trainees will undertake
additional didactic experiences selected to complement their educational and research background. Third, all
trainees will obtain research experience by collaborating with multiple mentors on high-level computational
genomic epidemiology of cancer projects. As an extension of this research experience, each trainee will be
required to write and defend a mock NIH proposal. Cancer researchers obtaining training in this program will
have the skills vital to deciphering the complex pathways comprising genetic and environmental risk factors for
disease. In doing so, they will ultimately be able to provide clinicians and their patients with invaluable
information for the prevention and treatment of cancer.
摘要
进行创新的癌症研究需要来自不同背景的科学家团队的投入,
包括分子生物学、肿瘤学、医学、流行病学、生物统计学、基因组学/遗传学,
生物信息学和计算机科学。在这些领域受过跨学科培训的研究人员
这对这些团队来说是非常有价值的,因为他们可以作为完成必要的综合工作的管道,
一些最有前途和前瞻性的癌症研究。由于内部培训的排他性,
然而,在这些领域,研究人员获得连接这些领域的知识的机会有限。
这些纪律。为了帮助解决这个问题,我们在这里建议继续这个T32计划,
在Case提供癌症计算基因组流行病学(CoGEC)的博士后培训
综合癌症中心。该计划定义了一个新颖的,跨学科的培训领域,
癌症研究、流行病学、生物统计学、遗传学和计算机科学的交叉。该计划的
结构由三个关键要求定义。首先,所有学员将参加五门专业核心课程,
涵盖各个学科及其交叉点的课程。第二,学员将承担
选择额外的教学经验,以补充他们的教育和研究背景。三是各
学员将通过与多位导师合作进行高级计算,
癌症基因组流行病学项目。作为这项研究经验的延伸,每个学员将
写一份模拟的NIH提案并为之辩护癌症研究人员获得培训,在这一计划将
具有破译包括遗传和环境风险因素在内的复杂途径的关键技能,
疾病通过这样做,他们最终将能够为临床医生和他们的病人提供宝贵的
预防和治疗癌症的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Xu其他文献
Rong Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Xu', 18)}}的其他基金
Computational Genomic Epidemiology of Cancer (CoGEC) Training Program
癌症计算基因组流行病学 (CoGEC) 培训计划
- 批准号:
9978718 - 财政年份:2017
- 资助金额:
$ 30.23万 - 项目类别:
An Integrated Reverse Engineering Approach Toward Rapid drug Re positioning for Alzheimer's Disease
一种针对阿尔茨海默病快速药物重新定位的综合逆向工程方法
- 批准号:
10220714 - 财政年份:2017
- 资助金额:
$ 30.23万 - 项目类别:
相似海外基金
New Epidemiologic Methods for Reducing Measurement Error and Misclassification Bias in Cancer Epidemiology
减少癌症流行病学中测量误差和误分类偏差的新流行病学方法
- 批准号:
10801058 - 财政年份:2023
- 资助金额:
$ 30.23万 - 项目类别:
Informing Cancer Epidemiology Through the Identification of Differentiating Chemical Constituents of Cigarillo Smoke
通过鉴定小雪茄烟雾的化学成分来了解癌症流行病学
- 批准号:
10281630 - 财政年份:2021
- 资助金额:
$ 30.23万 - 项目类别:
Leveraging Diversity in Cancer Epidemiology Cohorts and Novel Methods to Improve Polygenic Risk Scores
利用癌症流行病学队列的多样性和新方法来提高多基因风险评分
- 批准号:
10629437 - 财政年份:2021
- 资助金额:
$ 30.23万 - 项目类别:
Leveraging Diversity in Cancer Epidemiology Cohorts and Novel Methods to Improve Polygenic Risk Scores
利用癌症流行病学队列的多样性和新方法来提高多基因风险评分
- 批准号:
10212708 - 财政年份:2021
- 资助金额:
$ 30.23万 - 项目类别:
Leveraging Diversity in Cancer Epidemiology Cohorts and Novel Methods to Improve Polygenic Risk Scores
利用癌症流行病学队列的多样性和新方法来提高多基因风险评分
- 批准号:
10431853 - 财政年份:2021
- 资助金额:
$ 30.23万 - 项目类别:
Cancer Epidemiology Cohort in Male Health Professionals
男性健康专业人员中的癌症流行病学队列
- 批准号:
10273315 - 财政年份:2021
- 资助金额:
$ 30.23万 - 项目类别:
Cancer Epidemiology Education in Special Populations Program-15
特殊人群癌症流行病学教育计划-15
- 批准号:
10306972 - 财政年份:2020
- 资助金额:
$ 30.23万 - 项目类别:














{{item.name}}会员




