Translational Studies of Age-Associated Arterial Dysfunction, Western Diet and Aerobic Exercise: Role of the Gut Microbiome

年龄相关动脉功能障碍、西方饮食和有氧运动的转化研究:肠道微生物组的作用

基本信息

  • 批准号:
    9216189
  • 负责人:
  • 金额:
    $ 76.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary Age-related arterial dysfunction is the main risk factor for cardiovascular diseases (CVD). Recently, we have used short-term and lifelong studies in mice to determine how a Western-style diet (WD; high fat and sugar, low fiber and nutrient density) and aerobic exercise (EX), common lifestyle factors, interact with aging to influence endothelial dysfunction and stiffening of the large elastic arteries. We found that WD accelerates, and EX prevents, these key features of arterial aging via changes in oxidative stress and inflammation. The gut microbiome is a strong modulator of host metabolic health and inflammation that is influenced by age, diet and EX, but there is no information about its effects on arterial function in these or other settings. Our integrative hypothesis is that dysregulation of the gut microbiome (gut dysbiosis) with primary aging and WD consumption, coupled with increased intestinal permeability that allows gut-derived particles to leak into circulation, may act to impair arterial function via changes to adverse gut-derived metabolites such as atherosclerosis-linked trimethylamine-N-oxide (TMAO), and stimulation of toll-like receptor 4-induced pro- inflammatory signaling, whereas chronic aerobic exercise protects against these effects. The purpose of this application is to determine the potential causal role of the gut microbiome in the effects of aging, WD and EX on arterial function, and gain insight into the underlying metabolomic and inflammatory mechanisms. We will employ 3 highly innovative, complementary translational approaches: 1. Mouse studies that allow us to discern cause-and-effect: a) by assessing arterial function with aging ± WD in the presence vs. absence of the gut microbiome and associated signaling; and b) by determining if vascular phenotypes associated with aging, WD and EX can be transferred via the gut microbiome. We also will explore possible mechanisms using pharmacological inhibition and/or knock-out of suspected pathways. 2. Human studies assessing the time course (temporal associations) of diet (WD vs. non-WD)-induced changes in the gut microbiome vs. arterial function in young and older exercising and non-exercising healthy adults, using a randomized, single-blind, controlled feeding crossover study design. 3. Combined mouse/human studies employing “humanized” mice to determine if the characteristics present in the human gut microbiome with age, WD and EX predictably influence arterial function. These studies will determine not only changes to gut microbe presence and relative abundance with aging, WD and EX, but also the functional effects of those changes, allowing us to gain novel insight into the role of the gut microbiome in modulating vascular function with aging and these common lifestyle influences. The expected results have the potential to establish the gut microbiome as a key mechanism and therapeutic target for age-related arterial dysfunction, and to identify lifestyle or pharmacological strategies that may preserve microbial health, enhance arterial function and reduce the risk of age-related CVD.
Project Summary Age-related arterial dysfunction is the main risk factor for cardiovascular diseases (CVD). Recently, we have used short-term and lifelong studies in mice to determine how a Western-style diet (WD; high fat and sugar, low fiber and nutrient density) and aerobic exercise (EX), common lifestyle factors, interact with aging to influence endothelial dysfunction and stiffening of the large elastic arteries. We found that WD accelerates, and EX prevents, these key features of arterial aging via changes in oxidative stress and inflammation. The gut microbiome is a strong modulator of host metabolic health and inflammation that is influenced by age, diet and EX, but there is no information about its effects on arterial function in these or other settings. Our integrative hypothesis is that dysregulation of the gut microbiome (gut dysbiosis) with primary aging and WD consumption, coupled with increased intestinal permeability that allows gut-derived particles to leak into circulation, may act to impair arterial function via changes to adverse gut-derived metabolites such as atherosclerosis-linked trimethylamine-N-oxide (TMAO), and stimulation of toll-like receptor 4-induced pro- inflammatory signaling, whereas chronic aerobic exercise protects against these effects. The purpose of this application is to determine the potential causal role of the gut microbiome in the effects of aging, WD and EX on arterial function, and gain insight into the underlying metabolomic and inflammatory mechanisms. We will employ 3 highly innovative, complementary translational approaches: 1. Mouse studies that allow us to discern cause-and-effect: a) by assessing arterial function with aging ± WD in the presence vs. absence of the gut microbiome and associated signaling; and b) by determining if vascular phenotypes associated with aging, WD and EX can be transferred via the gut microbiome. We also will explore possible mechanisms using pharmacological inhibition and/or knock-out of suspected pathways. 2. Human studies assessing the time course (temporal associations) of diet (WD vs. non-WD)-induced changes in the gut microbiome vs. arterial function in young and older exercising and non-exercising healthy adults, using a randomized, single-blind, controlled feeding crossover study design. 3. Combined mouse/human studies employing “humanized” mice to determine if the characteristics present in the human gut microbiome with age, WD and EX predictably influence arterial function. These studies will determine not only changes to gut microbe presence and relative abundance with aging, WD and EX, but also the functional effects of those changes, allowing us to gain novel insight into the role of the gut microbiome in modulating vascular function with aging and these common lifestyle influences. The expected results have the potential to establish the gut microbiome as a key mechanism and therapeutic target for age-related arterial dysfunction, and to identify lifestyle or pharmacological strategies that may preserve microbial health, enhance arterial function and reduce the risk of age-related CVD.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DOUGLAS R SEALS其他文献

DOUGLAS R SEALS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DOUGLAS R SEALS', 18)}}的其他基金

Passive heat therapy for lowering systolic blood pressure and improving vascular function in mid-life and older adults
被动热疗可降低中年和老年人的收缩压并改善血管功能
  • 批准号:
    10596067
  • 财政年份:
    2022
  • 资助金额:
    $ 76.55万
  • 项目类别:
Targeting cellular senescence to prevent accelerated vascular aging induced by the common chemotherapeutic agent doxorubicin
靶向细胞衰老以防止常见化疗药物阿霉素引起的加速血管老化
  • 批准号:
    10505896
  • 财政年份:
    2022
  • 资助金额:
    $ 76.55万
  • 项目类别:
Passive heat therapy for lowering systolic blood pressure and improving vascular function in mid-life and older adults
被动热疗可降低中年和老年人的收缩压并改善血管功能
  • 批准号:
    10712162
  • 财政年份:
    2022
  • 资助金额:
    $ 76.55万
  • 项目类别:
Targeting cellular senescence to prevent accelerated vascular aging induced by the common chemotherapeutic agent doxorubicin
靶向细胞衰老以防止常见化疗药物阿霉素引起的加速血管老化
  • 批准号:
    10684719
  • 财政年份:
    2022
  • 资助金额:
    $ 76.55万
  • 项目类别:
Passive heat therapy for lowering systolic blood pressure and improving vascular function in mid-life and older adults
被动热疗可降低中年和老年人的收缩压并改善血管功能
  • 批准号:
    10375083
  • 财政年份:
    2022
  • 资助金额:
    $ 76.55万
  • 项目类别:
Mitochondrial-targeted antioxidant supplementation for improving age-related vascular dysfunction in humans
线粒体靶向抗氧化剂补充剂可改善人类与年龄相关的血管功能障碍
  • 批准号:
    10538571
  • 财政年份:
    2021
  • 资助金额:
    $ 76.55万
  • 项目类别:
Inspiratory muscle strength training for lowering blood pressure and improving endothelial function in postmenopausal women: comparison with "standard of care" aerobic exercise
用于降低绝经后妇女血压和改善内皮功能的吸气肌力量训练:与“标准护理”有氧运动的比较
  • 批准号:
    10414050
  • 财政年份:
    2021
  • 资助金额:
    $ 76.55万
  • 项目类别:
Mitochondrial-targeted antioxidant supplementation for improving age-related vascular dysfunction in humans
线粒体靶向抗氧化剂补充剂可改善人类与年龄相关的血管功能障碍
  • 批准号:
    10319609
  • 财政年份:
    2021
  • 资助金额:
    $ 76.55万
  • 项目类别:
Inspiratory muscle strength training for lowering blood pressure and improving endothelial function in postmenopausal women: comparison with "standard of care" aerobic exercise
用于降低绝经后妇女血压和改善内皮功能的吸气肌力量训练:与“标准护理”有氧运动的比较
  • 批准号:
    10178631
  • 财政年份:
    2021
  • 资助金额:
    $ 76.55万
  • 项目类别:
Inspiratory muscle strength training for lowering blood pressure and improving endothelial function in postmenopausal women: comparison with "standard of care" aerobic exercise
用于降低绝经后妇女血压和改善内皮功能的吸气肌力量训练:与“标准护理”有氧运动的比较
  • 批准号:
    10576933
  • 财政年份:
    2021
  • 资助金额:
    $ 76.55万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.55万
  • 项目类别:
    Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 76.55万
  • 项目类别:
    Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 76.55万
  • 项目类别:
    Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 76.55万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 76.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 76.55万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
  • 批准号:
    2230829
  • 财政年份:
    2023
  • 资助金额:
    $ 76.55万
  • 项目类别:
    Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 76.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 76.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 76.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了