Establishing a dose response for ultrasound neuromodulation
建立超声神经调节的剂量反应
基本信息
- 批准号:9229212
- 负责人:
- 金额:$ 33.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-23 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAffectAnimalsAttentionBehaviorBiological Neural NetworksBrainCellsCharacteristicsComplementCoupledDataDoseElectric CapacitanceElectroencephalographyElectrophysiology (science)EventEvent-Related PotentialsFocused UltrasoundFoundationsFrequenciesFunctional Magnetic Resonance ImagingGoalsGrowthHippocampus (Brain)HumanImageIn VitroInterneuronsInvestigationIon ChannelLaboratoriesLinear RegressionsLocationMagnetic ResonanceMagnetic Resonance ImagingMapsMeasurementMeasuresMembraneMembrane PotentialsMethodsModelingMonkeysMotorMusNeuronsOutputPatch-Clamp TechniquesPatternPhysicsPhysiologic pulsePlayPositioning AttributePreparationPropertyRadiationResearchResearch DesignResearch PersonnelRodentRoleSafetySchemeSkinSliceSomatosensory CortexStimulusSystemTactileTechnologyTestingTissuesTranslatingUltrasonographyWorkabstractingbaseblood oxygen level dependentblood oxygenation level dependent responsecraniumdensitydesigndosagedosimetryexperiencehippocampal pyramidal neuronimage guidedimaging modalityimprovedinsightmathematical modelmillimeterneural stimulationneuroimagingneurophysiologyneuroregulationnonhuman primatepatch clamprelating to nervous systemresearch studyresponsesimulationsomatosensorytool
项目摘要
Abstract
Ultrasound (US) neuromodulation has received increased attention in recent years due to its unique ability to
non-invasively activate and inhibit neurons. However, the mechanisms of US neuromodulation are not fully
understood, and little is known about the optimal parameters that elicit neuromodulation. In this proposal, we
will test a recently proposed model of US neuromodulation at the cellular level using patch clamp methods on
pyramidal and interneurons, which have differing characteristics that we hypothesize will cause them to
respond differently to US. US pulse parameters will be chosen using a fractional factorial design that will
enable us to assess which aspects of the US pulse are most important for eliciting US neuromodulation. We
will then translate this work to mice while measuring electrophysiological outputs and blood oxygen level
dependent functional magnetic resonance imaging (BOLD fMRI). These experiments will allow us to assess
whether findings at the cellular level hold in the whole animal and also to test the effects of US
neuromodulation in the somatosensory network using BOLD fMRI and electrophysiological readouts. We will
characterize the acoustic beam within the skull during these experiments using hydrophones, simulations, and
magnetic resonance (MR) methods of imaging US beams, such as MR acoustic radiation force imaging. This
quantification is important in interpreting US neuromodulation experiments, particularly in small animals,
because their skulls act as reverberation chambers at the frequencies commonly used for neuromodulation.
These studies will determine important spatial characteristics and limitations of US neuromodulation when
used in the brains of small animals, where increased neuron density and reverberations likely cause
proportionally larger effects to occur than in larger animals. In our final aim, we will use an array-based US
neuromodulation system that is currently being developed in our lab to evoke activation patterns, and
investigate the fine, middle, and long-range circuits in monkeys. This system can generate mm-scale foci
through the monkey skull, which will enable exploration of the well-studied somatosensory system that is
homologous to that in humans. In these monkeys, we will assess the effects of US neuromodulation over the
parameter space identified in the first two aims using electrophysiological readouts and BOLD fMRI to map the
S1 subregions of the somatosensory cortex during stimulation and quantify the effect of US parameters on
BOLD fMRI to inhibit or excite the skin tactile evoked response. At the completion of the proposed studies, we
will have an improved understanding of the cellular interactions of US with neurons, quantitative assessments
of electrophysiological and BOLD fMRI activity that occurs at the network level, and an improved
understanding of the parameter space that elicits US neuromodulation.
摘要
近年来,超声神经调节因其独特的能力而受到越来越多的关注。
非侵入性地激活和抑制神经元。然而,美国神经调节的机制并不完全
了解,但对诱导神经调节的最佳参数知之甚少。在这项提案中,我们
将使用膜片钳方法在细胞水平上测试最近提出的美国神经调节模型
锥体和中间神经元,它们具有不同的特征,我们假设这些特征将导致它们
对美国的反应不同。US脉冲参数将使用部分析因设计进行选择,该设计将
使我们能够评估美国脉搏的哪些方面对引发美国神经调节最重要。我们
然后将这项工作转移到小鼠身上,同时测量电生理输出和血氧水平
依赖功能磁共振成像(BOLD FMRI)。这些实验将使我们能够评估
细胞水平上的发现是否适用于整个动物,并测试US的效果
用BOLD功能磁共振成像和电生理读数研究躯体感觉网络中的神经调节。我们会
在这些实验中,使用水听器、模拟和
磁共振(MR)成像US波束的方法,例如MR声辐射力成像。这
量化对于解释美国的神经调节实验很重要,尤其是在小动物身上。
因为它们的头骨在通常用于神经调节的频率上扮演着混响室的角色。
这些研究将确定美国神经调节的重要空间特征和局限性
用于小动物的大脑,神经元密度增加和回响可能会导致
在比例上比在较大的动物身上发生的影响更大。在我们的最终目标中,我们将使用基于数组的US
我们实验室目前正在开发的神经调节系统,以唤起激活模式,以及
研究猴子的细、中、远距离回路。该系统可以产生毫米级的焦距
通过猴子头骨,这将使探索研究得很好的躯体感觉系统成为可能
与人类的基因同源。在这些猴子身上,我们将评估美国神经调节对
在前两个目标中确定的参数空间使用电生理读数和粗略的fMRI来标测
刺激过程中躯体感觉皮质的S1亚区,并量化US参数对
大胆的功能磁共振成像,以抑制或刺激皮肤触觉诱发反应。在完成建议的研究后,我们
将对US与神经元的细胞相互作用有更好的理解,定量评估
在网络层面上发生的电生理和大胆的fMRI活动,以及改进的
理解引起美国神经调节的参数空间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles F Caskey其他文献
Ultrasound neuromodulation: planning and validating treatments
超声神经调节:治疗方案的规划与验证
- DOI:
10.1016/j.cobeha.2024.101430 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:3.500
- 作者:
Michelle K Sigona;Charles F Caskey - 通讯作者:
Charles F Caskey
Charles F Caskey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles F Caskey', 18)}}的其他基金
Next generation transcranial ultrasound-based neuromodulation using phase shift nanoemulsions
使用相移纳米乳剂的下一代经颅超声神经调节
- 批准号:
10577371 - 财政年份:2023
- 资助金额:
$ 33.65万 - 项目类别:
Translating an MR-guided focused ultrasound system for first-in-human precision neuromodulation of pain circuits
将 MR 引导聚焦超声系统用于人体首个疼痛回路精确神经调节
- 批准号:
10805159 - 财政年份:2023
- 资助金额:
$ 33.65万 - 项目类别:
Biophysical and Neural Basis of Focused Ultrasound Stimulation
聚焦超声刺激的生物物理和神经基础
- 批准号:
10415733 - 财政年份:2022
- 资助金额:
$ 33.65万 - 项目类别:
Development of an MRgFUS system for precision-targeted neuromodulation of pain circuits with simultaneous functional MRI
开发 MRgFUS 系统,通过同步功能 MRI 对疼痛回路进行精确靶向神经调节
- 批准号:
9932739 - 财政年份:2019
- 资助金额:
$ 33.65万 - 项目类别:
Fast volumetric treatment using multi-focus insonation and thermal amplification
使用多焦点声波和热放大进行快速体积处理
- 批准号:
9335832 - 财政年份:2016
- 资助金额:
$ 33.65万 - 项目类别:
Fast volumetric treatment using multi-focus insonation and thermal amplification
使用多焦点声波和热放大进行快速体积处理
- 批准号:
9111381 - 财政年份:2016
- 资助金额:
$ 33.65万 - 项目类别:
Neuron selective modulation of brain circuitry in non-human primates
非人类灵长类动物脑回路的神经元选择性调节
- 批准号:
9148240 - 财政年份:2015
- 资助金额:
$ 33.65万 - 项目类别:
Neuron selective modulation of brain circuitry in non-human primates
非人类灵长类动物脑回路的神经元选择性调节
- 批准号:
9037262 - 财政年份:2015
- 资助金额:
$ 33.65万 - 项目类别:
Neuron selective modulation of brain circuitry in non-human primates
非人类灵长类动物脑回路的神经元选择性调节
- 批准号:
9272197 - 财政年份:2015
- 资助金额:
$ 33.65万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.65万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.65万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.65万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.65万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.65万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.65万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 33.65万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.65万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 33.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists